Skip to main content

Principles for the Design of PET Probes

  • Chapter
  • First Online:
Principles of Molecular Probe Design and Applications
  • 321 Accesses

Abstract

This chapter will cover the knowledge of how to generate positron emitters and label them onto active pharmaceutical compounds ranging from small organic molecules to peptides and antibodies. The discussion will cover several mechanisms to improve the art of PET chemistry in a pedagogical approach. Labeling methods for [18F], [11C], [64Cu], and [68Ga] will be discussed, followed by practical examples in each case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • M.E. Phelps, Molecular imaging with positron emission tomography. Annu. Rev. Nucl. Part. Sci. 52, 303–338 (2002)

    Article  Google Scholar 

  • M. Conti, L. Eriksson, Physics of pure and non-pure positron emitters for PET: a review and a discussion. EJNMMI Phys. 3, 8 (2016)

    Article  Google Scholar 

  • D.D. Nolting, M.L. Nickels, N. Guo, W. Pham, Molecular imaging probe development: a chemistry perspective. Am. J. Nucl. Med. Mol. Imaging. 2, 273–306 (2012)

    Google Scholar 

  • W.H. Organization, Radiopharmaceuticals, The International Pharmacopoeia, 4th edn. (2008)

    Google Scholar 

  • P.E. Edem, E.J.L. Steen, A. Kjar, M.M. Herth, Fluorine-18 radiolabeling strategies-advantages and disadvantages of currently applied labeling methods, in Late-Stage Fluorination of Bioactive Molecules and Biologically-Relevant Substrates, Chapter 2 (2019), pp. 29–103

    Google Scholar 

  • L. Cai, S. Lu, P.V. W., Chemistry with [18F]fluoride ion. Eur. J. Org. Chem. 2853–2873 (2008)

    Google Scholar 

  • A.R. Jalilian, S.A. Tabatabai, A. Shafiee, H. Afarideh, R. Najafi, M. Bineshmarvasti, One-step, no-carrier-added synthesis of a 18F-labeled benzodiazepine receptor ligand. J. Label. Compd. Radiopharm. 43, 545–555 (2000)

    Article  Google Scholar 

  • K. Mueller, C. Faeh, F. Diederich, Fluorine in pharmaceuticals: looking beyond intuition. Science 317, 1881–1886 (2007)

    Article  Google Scholar 

  • M. Attina, F. Cacace, A.P. Wolf, Labeled aryl fluorides from the nucleophilic displacement of activated nitro groups by 18F-F. J. Label. Compd. Radiopharm. 20, 501–514 (1982)

    Article  Google Scholar 

  • O. Jacobson, D.O. Kiesewetter, X. Chen, Fluorine-18 radiochemistry, labeling strategies and synthetic routes. Bioconjug. Chem. 26, 1–18 (2015)

    Article  Google Scholar 

  • D.L. Bailey, D.W. Townsend, P.E. Valk, M.N. Maisey, N.S. Mason, C.A. Mathis, Positron emission tomography: basic sciences and clinical practice, in Springer Science & Business Media-Radiohalogens for PET Imaging (2004), p. 219

    Google Scholar 

  • D.J. Schlyer, M.A. Bastos, D. Alexoff, A.P. Wolf, Separation of [18F]fluoride from [18O]water using anion exchange resin. Int. J. Rad. Appl. Instrum. A. 41, 531–533 (1990)

    Article  Google Scholar 

  • J. Bergman, O. Solin, Fluorine-18-labeled fluorine gas for synthesis of tracer molecules. Nucl. Med. Biol. 24, 677–683 (1997)

    Article  Google Scholar 

  • J.S. Fowler, T. Ido, Initial and subsequent approach for the synthesis of 18FDG. Semin. Nucl. Med. 32, 6–12 (2002)

    Article  Google Scholar 

  • T. Ido, C.N. Wan, V. Casella, J.S. Fowler, A.P. Wolf, Labeled 2-deoxy-D-glucose analogs. 18F-labeled 2-deoxy-2-fluoro-D-glucose, 2-deoxy-2-fluoro-D-mannose and 14C-2-deoxy-2-fluoro-D-glucose. J. Label. Compd. Radiopharm. 14, 175–183 (1977)

    Article  Google Scholar 

  • F. Oberdorfer, E. Hofmann, W. Maier-Borst, Preparation of 18F-labelled N-fluoropyridinium triflate. J. Label. Compd. Radiopharm. 25, 999–1005 (1988a)

    Article  Google Scholar 

  • R.E. Banks, G.E. Williamson, Chem. Ind. 1864 (1964)

    Google Scholar 

  • A. Luxen, M. Perlmutter, G.T. Bida, G. Van Moffaert, J.S. Cook, N. Satyamurthy, M.E. Phelps, J.R. Barrio, Remote, semiautomated production of 6-[18F]fluoro-L-dopa for human studies with PET. Int. J. Rad. Appl. Instrum. A 41, 275–281 (1990)

    Article  Google Scholar 

  • M. Namavari, A. Bishop, N. Satyamurthy, G. Bida, J.R. Barrio, Regioselective radiofluorodestannylation with [18F]F2 and [18F]CH3COOF: a high yield synthesis of 6-[18F]Fluoro-L-dopa. Int. J. Rad. Appl. Instrum. A 43, 989–996 (1992)

    Article  Google Scholar 

  • L.P. Szajek, M.A. Channing, W.C. Eckelman, Appl. Radiat. Isot. 49, 795–804 (1998)

    Article  Google Scholar 

  • F. Oberdorfer, E. Hofmann, W. Maier-Borst, Appl. Radiat. Isot. 39, 685–688 (1988b)

    Article  Google Scholar 

  • N. Satyamurthy, G.T. Bida, M.E. Phelps, J.R. Barrio, N-[18F]fluoro-N-alkylsulfonamides: novel reagents for mild and regioselective radiofluorination. Int. J. Rad. Appl. Instrum. A 41, 733–738 (1990)

    Article  Google Scholar 

  • H. Teare, E.G. Robins, E. Arstad, S.K. Luthra, V. Gouverneur, Synthesis and reactivity of [18F]-N-fluorobenzenesulfonimide. Chem. Commun. (Camb) 2330–2332 (2007)

    Google Scholar 

  • H. Teare, E.G. Robins, A. Kirjavainen, S. Forsback, G. Sandford, O. Solin, S.K. Luthra, V. Gouverneur, Radiosynthesis and evaluation of [18F]Selectfluor bis(triflate). Angew. Chem. Int. Ed. Engl. 49, 6821–6824 (2010)

    Article  Google Scholar 

  • M. Tredwell, V. Gouverneur, 18F labeling of arenes. Angew. Chem. Int. Ed. Engl. 51, 11426–11437 (2012)

    Article  Google Scholar 

  • I.S. Stenhagen, A.K. Kirjavainen, S.J. Forsback, C.G. Jorgensen, E.G. Robins, S.K. Luthra, O. Solin, V. Gouverneur, [18F]fluorination of an arylboronic ester using [18F]selectfluor bis(triflate): application to 6-[18F]fluoro-L-DOPA. Chem. Commun. (camb) 49, 1386–1388 (2013)

    Article  Google Scholar 

  • M.B. Smith, J. March, March’s Advanced Organic Chemistry, 5th edn (2001a), p. 439

    Google Scholar 

  • M.B. Smith, J. March, March’s Advanced Organic Chemistry, 5th edn (2001b), p. 444

    Google Scholar 

  • P.R. Wells, Linear free energy relationships. Chem. Rev. 63, 171–219 (1963)

    Article  Google Scholar 

  • M. Ansari, R. Kessler, R. Baldwin, Microwave labeling of [18F]fallypride with a commercial synthesis module. J. Nucl. Med. (Radiopharmacy Posters), 1304 (poster number) (2008)

    Google Scholar 

  • L. Dolci, F. Dolle, S. Jubeau, F. Vaufrey, C. Crouzel, 2-[18F]fluoropyridines by no-carrier-added nucleophilic aromatic substitution with [18F]FK-K222-A comparative study. J. Label. Compd. Radiopharm. 42, 975–985 (1999)

    Article  Google Scholar 

  • F.I. Aigbirhio, R.M. Carr, V.W. Pike, C.J. Steel, D.R. Sutherland, Automated radiosynthesis of no-carrier-added [S-fluoromethyl-18F]fluticasone propionate as a radiotracer for lung deposition studies with PET. J. Label. Compd. Radiopharm. 39, 567–584 (1997)

    Article  Google Scholar 

  • A. Petric, J.R. Barrio, M. Namavari, S.C. Huang, N. Satyamurthy, Synthesis of 3beta-(4-[18F]fluoromethylphenyl)- and 3beta-(2-[18F] fluoromethylphenyl)tropane-2beta-carboxylic acid methyl esters: new ligands for mapping brain dopamine transporter with positron emission tomography. Nucl. Med. Biol. 26, 529–535 (1999)

    Article  Google Scholar 

  • K. Hamacher, H.H. Coenen, G. Stocklin, Efficient stereospecific synthesis of no-carrier-added 2-[18F]-fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution. J. Nucl. Med. 27, 235–238 (1986)

    Google Scholar 

  • H. Luo, A.L. Beets, M.J. McAllister, M. Greenbaum, D.W. McPherson, J. Knapp, F.F., Resolution, in vitro and in vivo evaluation of fluorine-18-labeled isomers of 1-azabicyclo[2.2. 2] oct-3-ylα-(1-fluoropent-5-yl)α-hydroxy-α-phenylacetate (FQNPe) as new PET candidates for the imaging of muscarinic-cholinergic receptor. J. Label. Compd. Rad. 41, 681–704 (1998)

    Google Scholar 

  • M.R. Kilbourn, Fluorine-18 labeling of radiopharmceuticals, in Nuclear Science Series (National Academy Press, Washington DC, 1990) NAS-NS-3203

    Google Scholar 

  • G. Angelini, M. Speranza, A.P. Wolf, C.-Y. Shiue, Nucleophilic aromatic substitution of activated cationic groups by 18-labeled fluoride. A useful route to no-carrier added (nca)18F-labeled aryl fluorides. J. Fluor. Chem. 27, 177–191 (1985)

    Article  Google Scholar 

  • D.D. Nolting, M. Nickels, M.N. Tantawy, J.P. Xie, T.E. Peterson, B.C. Crews, L. Marnett, J.C. Gore, W. Pham, Convergent synthesis and evaluation of 18F-labeled azulenic COX2 probes for cancer imaging, Front. Oncology 2, 1–8 (2013)

    Google Scholar 

  • R. Ritawidya, B. Wenzel, R. Teodoro, M. Toussaint, M. Kranz, W. Deuther, S. Dukic, F.A. Ludwig, M. Scheunemann, P. Brust, Radiosynthesis and biological investigation of a novel fluorine-18 labeled benzoimidazotriazine-based radioligand for the imaging of phosphodiesterase 2A with positron emission tomography. Molecules 24, 4149 (2019)

    Article  Google Scholar 

  • M.R. Kilbourn, M.S. Haka, Synthesis of [18F]GBR13119, a presynaptic dopamine uptake antagonist. Int. J. Rad. Appl. Instrum. A 39, 279–282 (1988)

    Article  Google Scholar 

  • C. Lemaire, M. Guillaume, L. Christiaens, A.J. Palmer, R. Cantineau, A new route for the synthesis of [18F]fluoroaromatic substituted amino acids: no carrier added L-p-[18F]fluorophenylalanine. Int. J. Rad. Appl. Instrum. A 38, 1033–1038 (1987)

    Article  Google Scholar 

  • M.S. Haka, M.R. Kilbourn, G.L. Watkins, S.A. Toorongian, Aryltrimethylammonium trifluoromethanesulfonates as precursors to aryl [18F]fluorides: improved synthesis of [18F]GBR-13119. J. Label. Compd. Radiopharm. 27, 823–833 (1989)

    Article  Google Scholar 

  • J. Ballinger, B.M. Bowen, G. Firnau, E.S. Garnett, F.W. Tear, Int. J. Appl. Radiat. Isot. 35, 1125–1128 (1984)

    Article  Google Scholar 

  • Y.Y. See, M.T. Morales-Colon, D.C. Bland, M.S. Sanford, Development of SNAr nucleophilic fluorination: a fruitful academia-industry collaboration. Acc. Chem. Res. 53, 2372–2383 (2020)

    Article  Google Scholar 

  • V.W. Pike, Hypervalent aryliodine compounds as precursors for radiofluorination. J. Label. Compd. Radiopharm. 61, 196–227 (2018)

    Article  Google Scholar 

  • M. Uyanik, T. Yasui, K. Ishihara, Enantioselective Kita oxidative spirolactonization catalyzed by in situ generated chiral hypervalent iodine(III) species. Angew. Chem. Int. Ed. Engl. 49, 2175–2177 (2010)

    Article  Google Scholar 

  • S. Telu, J.H. Chun, F.G. Simeon, S. Lu, V.W. Pike, Syntheses of mGluR5 PET radioligands through the radiofluorination of diaryliodonium tosylates. Org. Biomol. Chem. 9, 6629–6638 (2011)

    Article  Google Scholar 

  • V.V. Zhdankin, P.J. Stang, Chemistry of polyvalent iodine. Chem. Rev. 108, 5299–5358 (2008)

    Article  Google Scholar 

  • M. Ochiai, M. Toyonari, T. Nagaoka, D.W. Chen, M. Kida, Tetrahedron. Lett. 38, 6709–6712 (1997)

    Article  Google Scholar 

  • M. Bielawski, B. Olofsson, High-yielding one-pot synthesis of diaryliodonium triflates from arenes and iodine or aryl iodides. Chem. Commun. (Camb) 2521–2523 (2007)

    Google Scholar 

  • M. Bielawski, D. Aili, B. Olofsson, Regiospecific one-pot synthesis of diaryliodonium tetrafluoroborates from arylboronic acids and aryl iodides. J. Org. Chem. 73, 4602–4607 (2008)

    Article  Google Scholar 

  • E. Lindstedt, M. Reitti, B. Olofsson, One-pot synthesis of unsymmetric diaryliodonium salts from iodine and arenes. J. Org. Chem. 82, 11909–11914 (2017)

    Article  Google Scholar 

  • N. Soldatova, P. Postnikov, O. Kukurina, V.V. Zhdankin, A. Yoshimura, T. Wirth, M.S. Yusubov, One-pot synthesis of diaryliodonium salts from arenes and aryl iodides with Oxone-sulfuric acid. Beilstein. J. Org. Chem. 14, 849–855 (2018)

    Article  Google Scholar 

  • M. Ochiai, Y. Kitagawa, M. Toyonari, On the mechanism of α-phenylation of β-keto esters with diaryl-λ3-iodanes: evidence for a non-radical pathway. Archieve Org. Chem. 6, 43–48 (2003)

    Google Scholar 

  • J.H. Chun, S. Lu, Y.S. Lee, V.W. Pike, Fast and high-yield microreactor syntheses of ortho-substituted [(18)F]fluoroarenes from reactions of [(18)F]fluoride ion with diaryliodonium salts. J. Org. Chem. 75, 3332–3338 (2010)

    Article  Google Scholar 

  • M. Ochiai, Y. takaoka, Y. Masaki, Y. Nagao, M. Shiro, J. Am. Chem. Soc, 112, 5677 (1990)

    Google Scholar 

  • T. Okuyama, T. Takino, T. Sueda, M. Ochiai, Solvolysis of cyclohexenyliodonium salt, a new precursor for the vinyl cation: remarkable nucleofugality of the phenyliodonio group and evidence for internal return from an intimate ion-molecule pair. J. Am. Chem. Soc. 117, 3360–3367 (1995)

    Article  Google Scholar 

  • A. Shah, V.W. Pike, D.A. Widdowson, The synthesis of [18F]fluoroarenes from the reaction of cyclotron-produced [18F]fluoride ion with diaryliodonium salts. J. Chem. Soc. Perkin. Trans. 1, 2043–2046 (1998)

    Article  Google Scholar 

  • V.V. Grushin, I.I. Demkina, T.P. Tolstaya, J. Chem. Soc. Perkin. Trans. 2, 505 (1992)

    Article  Google Scholar 

  • M.S. Yusubov, D.Y. Svitich, M.S. Larkina, V.V. Zhdankin, Applications of iodonium salts and iodonium ylides as precursors for nucleophilic fluorination in positron emission tomography. Archieve Org. Chem. 384–395 (2013)

    Google Scholar 

  • B.C. Lee, J.S. Kim, B.S. Kim, J.Y. Son, S.K. Hong, H.S. Park, B.S. Moon, J.H. Jung, J.M. Jeong, S.E. Kim, Aromatic radiofluorination and biological evaluation of 2-aryl-6-[18F]fluorobenzothiazoles as a potential positron emission tomography imaging probe for β-amyloid plaques. Bioorg. Med. Chem. 19, 2980–2990 (2011)

    Article  Google Scholar 

  • B.S. Moon, H.S. Kil, J.H. Park, J.S. Kim, J. Park, D.Y. Chi, B.C. Lee, S.E. Kim, Facile aromatic radiofluorination of [18F]flumazenil from diaryliodonium salts with evaluation of their stability and selectivity. Org. Biomol. Chem. 9, 8346–8355 (2011)

    Article  Google Scholar 

  • N. Satyamurthy, J.R. Barrio, No-carrier-added nucleophilic [F-18] fluorination of aromatic compounds, WO2010–117435 A2. 2010 (2010)

    Google Scholar 

  • M.S. Yusubov, A. Yoshimura, V.V. Zhdankin, Iodonium ylides in organic synthesis. ARKIVOC-Revi. Acc. 342–374 (2016)

    Google Scholar 

  • W. Kirmse, Carbene complexes of nonmetals. Eur. J. Org. Chem. 237–260 (2005)

    Google Scholar 

  • S.R. Goudreau, D. Marcoux, A.B. Charette, General method for the synthesis of phenyliodonium ylides from malonate esters: easy access to 1,1-cyclopropane diesters. J. Org. Chem. 74, 470–473 (2009)

    Article  Google Scholar 

  • C. Zhu, A. Yoshimura, P. Solntsev, L. Ji, Y. Wei, V.N. Nemykin, V.V. Zhdankin, New highly soluble dimedone-derived iodonium ylides: preparation, X-ray structure, and reaction with carbodiimide leading to oxazole derivatives. Chem. Commun. (camb) 48, 10108–10110 (2012)

    Article  Google Scholar 

  • I.N. Petersen, J. Villadsen, H.D. Hansen, J. Madsen, A.A. Jensen, N. Gillings, S. Lehel, M.M. Herth, G.M. Knudsen, J.L. Kristensen, (18)F-Labelling of electron rich iodonium ylides: application to the radiosynthesis of potential 5-HT2A receptor PET ligands. Org. Biomol. Chem. 15, 4351–4358 (2017)

    Article  Google Scholar 

  • N.A. Stephenson, J.P. Holland, A. Kassenbrock, D.L. Yokell, E. Livni, S.H. Liang, N. Vasdev, Iodonium ylide-mediated radiofluorination of 18F-FPEB and validation for human use. J. Nucl. Med. 56, 489–492 (2015)

    Article  Google Scholar 

  • S.H. Liang, D.L. Yokell, R.N. Jackson, P.A. Rice, R. Callahan, K.A. Johnson, D. Alagille, G. Tamagnan, T.L. Collier, N. Vasdev, Microfluidic continuous-flow radiosynthesis of [(18)F]FPEB suitable for human PET imaging. Medchemcomm 5, 432–435 (2014)

    Article  Google Scholar 

  • K. Gondo, T. Kitamura, Reaction of iodonium ylides of 1,3-dicarbonyl compounds with HF reagents. Molecules 17, 6625–6632 (2012)

    Article  Google Scholar 

  • A.P. Wolf, C.S. Redvanly, Carbon-11 and radiopharmaceuticals. Int. J. Appl. Radiat. Isot. 28, 29–48 (1977)

    Article  Google Scholar 

  • K. Dahl, C. Halldin, M. Schou, New methodologies for the preparation of carbon-11 labeled radiopharmaceuticals. Clin. Transl. Imaging 5, 275–289 (2017)

    Article  Google Scholar 

  • A.C. Runkle, X. Shao, L.J. Tluczek, B.D. Henderson, B.G. Hockley, P.J. Scott, Automated production of [11C]acetate and [11C]palmitate using a modified GE Tracerlab FX(C-Pro). Appl. Radiat. Isot. 69, 691–698 (2011)

    Article  Google Scholar 

  • F. Luzi, A.D. Gee, S. Bongarzone, Rapid one-pot radiosynthesis of [carbonyl-(11)C]formamides from primary amines and [(11)C]CO2. EJNMMI Radiopharm. Chem. 5, 20 (2020)

    Article  Google Scholar 

  • C. Taddei, A.D. Gee, Recent progress in [(11) C]carbon dioxide ([(11) C]CO2) and [(11) C]carbon monoxide ([(11) C]CO) chemistry. J. Label. Comp. Radiopharm. 61, 237–251 (2018)

    Article  Google Scholar 

  • J. Eriksson, G. Antoni, B. Langstrom, O. Itsenko, The development of (11)C-carbonylation chemistry: a systematic view. Nucl. Med. Biol. 92, 115–137 (2021)

    Article  Google Scholar 

  • P.J. Riss, S. Lu, S. Telu, F.I. Aigbirhio, V.W. Pike, Cu(I)-catalyzed (11)C carboxylation of boronic acid esters: a rapid and convenient entry to (11)C-labeled carboxylic acids, esters, and amides. Angew. Chem. Int. Ed. Engl. 51, 2698–2702 (2012)

    Article  Google Scholar 

  • A.A. Wilson, A. Garcia, S. Houle, N. Vasdev, Direct fixation of [(11)C]-CO(2) by amines: formation of [(11)C-carbonyl]-methylcarbamates. Org. Biomol. Chem. 8, 428–432 (2010)

    Article  Google Scholar 

  • A.H. Dheere, S. Bongarzone, C. Taddei, R. Yan, A.D. Gee, Synthesis of 11C-labelled symmetrical ureas via the rapid incorporation of [11C]CO2 into aliphatic amines. Synlett 26, 2257–2260 (2015)

    Article  Google Scholar 

  • M. Boudjemeline, R. Hopewell, P.L. Rochon, D. Jolly, I. Hammami, S. Villeneuve, A. Kostikov, Highly efficient solid phase supported radiosynthesis of [(11) C]PiB using tC18 cartridge as a “3-in-1” production entity. J. Label. Comp. Radiopharm. 60, 632–638 (2017)

    Article  Google Scholar 

  • T.A. Singleton, M. Boudjemeline, R. Hopewell, D. Jolly, H. Bdair, A. Kostikov, Solid phase 11C-methylation, purification and formulation for the production of PET tracers. J. Vis. Exp. (2019)

    Google Scholar 

  • R. Iwata, C. Pascali, A. Bogni, Y. Miyake, K. Yanai, T. Ido, A simple loop method for the automated preparation of (11C)raclopride from (11C)methyl triflate. Appl. Radiat. Isot. 55, 17–22 (2001)

    Article  Google Scholar 

  • A.R. Studenov, S. Jivan, M.J. Adam, T.J. Ruth, K.R. Buckley, Studies of the mechanism of the in-loop synthesis of radiopharmaceuticals. Appl. Radiat. Isot. 61, 1195–1201 (2004)

    Article  Google Scholar 

  • A.A. Wilson, A. Garcia, L. Jin, S. Houle, Radiotracer synthesis from [(11)C]-iodomethane: a remarkably simple captive solvent method. Nucl. Med. Biol. 27, 529–532 (2000)

    Article  Google Scholar 

  • X. Shao, P.L. Schnau, M.V. Fawaz, P.J. Scott, Enhanced radiosyntheses of [(1)(1)C]raclopride and [(1)(1)C]DASB using ethanolic loop chemistry. Nucl. Med. Biol. 40, 109–116 (2013)

    Article  Google Scholar 

  • L. Cai, R. Xu, X. Guo, V.W. Pike, Rapid room-temperature (11)C-methylation of arylamines with [(11)C]methyl iodide promoted by solid inorganic bases in DMF. Euro. J. Org. Chem. 2012, 1303–1310 (2012)

    Article  Google Scholar 

  • C. Einhorn, J. Einhorn, J.L. Luche, Sonochemistry-the use of ultrasonic waves in synthetic organic chemistry. Synthesis 787–813 (1989)

    Google Scholar 

  • Y. Andersson, A. Cheng, B. Langstrom, Palladium-promoted coupling reactions of [11C]methyl iodide with organotin and organoboron compounds. Acta. Chemica. Scandinvica. 49, 683–688 (1995)

    Article  Google Scholar 

  • H. Doi, Pd-mediated rapid cross-couplings using [11C]methyl iodide: groundbreaking labeling methods in 11C radiochemistry. Label. Comp. Radiopharm. 58, 73–85 (2015)

    Article  Google Scholar 

  • A.C. Frisch, M. Beller, Catalysts for cross-coupling reactions with non-activated alkyl halides. Angew. Chem. Int. Ed. Engl. 44, 674–688 (2005)

    Article  Google Scholar 

  • V.L. Anderson, M.M. Herth, S. Lehel, G.M. Knudsen, J.L. Kristensen, Palladium-mediated conversion of para-aminoarylboronic esters intopara-aminoaryl-11C-methanes. Tetrahedron. Lett. 54, 213–216 (2013)

    Article  Google Scholar 

  • L. Pizzorno, Nothing boring about boron. Integr. Med. 14, 35–48 (2015)

    Google Scholar 

  • E.D. Hostetler, S. Fallis, T.J. MCCarthy, M.J. Welch, J.A. Katzenellenbogen, Improved methods for the synthesis of [11C]palmitic acid. J. Org. Chem. 63, 1348–1351 (1998)

    Google Scholar 

  • K. Dahl, M. Schou, C. Halldin, Direct and efficient (Carbonyl)cobalt-mediated aryl acetylation using [11C]Methyl Iodide. Eur. J. Org. Chem. 2775–2777 (2016)

    Google Scholar 

  • O. Rahman, T. Kihlberg, B. Langstrom, Eur. J. Org. Chem. 474–478 (2004)

    Google Scholar 

  • F. Karimi, J. Barletta, B. Langstrom, Eur. J. Org. Chem. 2374–2378 (2005)

    Google Scholar 

  • K. Dahl, M. Schou, N. Amini, C. Halldin, Eur. J. Org. Chem. 1228–1231 (2013)

    Google Scholar 

  • T. Arai, M.R. Zhang, M. Ogawa, T. Fukumura, K. Kato, K. Suzuki, Efficient and reproducible synthesis of [1-11C]acetyl chloride using the loop method. Appl. Radiat. Isot. 67, 296–300 (2009a)

    Article  Google Scholar 

  • T. Arai, K. Kato, M. Zhang, Tetrahedron Lett. 50, 4788–4791 (2009b)

    Google Scholar 

  • T. Arai, Nucl. Med. Biol. 39, 702–708 (2012)

    Article  Google Scholar 

  • T. Kihlberg, B. Langstrom, Biologically active 11C-labeled amides using palladium-mediated reactions with aryl halides and [11C]carbon monoxide. J. Org. Chem. 64, 9201–9205 (1999)

    Article  Google Scholar 

  • C.A. Tobias, J.H. Lawrence, F.J.W. Roughton, W.J. Rooth, M.I. Gregerson, Am. J. Physiol. 145, 253–260 (1945)

    Article  Google Scholar 

  • A. Brennfuhrer, H. Neumann, M. Beller, Palladium-catalyzed carbonylation reactions of aryl halides and related compounds. Angew. Chem. Int. Ed. Engl. 48, 4114–4133 (2009)

    Article  Google Scholar 

  • S. Kealey, A. Gee, P.W. Miller, Transition metal mediated [(11) C]carbonylation reactions: recent advances and applications. J. Label. Comp. Radiopharm. 57, 195–201 (2014)

    Article  Google Scholar 

  • O. Rahman, [(11) C]carbon monoxide in labeling chemistry and positron emission tomography tracer development: scope and limitations. J. Label. Comp. Radiopharm. 58, 86–98 (2015)

    Article  Google Scholar 

  • H. Doi, J. Barletta, M. Suzuki, R. Noyori, Y. Watanabe, B. Langstrom, Synthesis of 11C-labelled N, N’-diphenylurea and ethyl phenylcarbamate by a rhodium-promoted carbonylation via [11C]isocyanatobenzene using phenyl azide and [11C]carbon monoxide. Org. Biomol. Chem. 2, 3063–3066 (2004)

    Article  Google Scholar 

  • I. Ryu, K. Kusano, A. Ogawa, N. Kambe, N. Sonoda, Free-radical carbonylation efficient trapping of carbon monoxide by carbon radicals. J. Am. Chem. Soc. 112, 1295–1297 (1990)

    Article  Google Scholar 

  • O. Itsenko, B. Langstrom, Radical-mediated carboxylation of alkyl iodides with [11C]carbon monoxide in solvent mixtures. J. Org. Chem. 70, 2244–2249 (2005a)

    Article  Google Scholar 

  • O. Itsenko, B. Langstrom, Photoinitiated free radical carbonylation enhanced by photosensitizers. Org. Lett. 7, 4661–4664 (2005b)

    Article  Google Scholar 

  • P. Lidstrom, T. Kihlberg, B. Langstrom, J. Chem. Soc. Perkin. Trans. 1, 2701–2706 (1997)

    Article  Google Scholar 

  • M.H. Al-Qahtani, V.W. Pike, J. Label. Compd. Radiopharm. 43, 825–835 (2000)

    Article  Google Scholar 

  • H. Audrain, L. Martarello, A. Gee, D. Bender, Utilisation of [11C]-labelled boron carbonyl complexes in palladium carbonylation reaction. Chem. Commun. (Camb) 5, 558–559 (2004)

    Article  Google Scholar 

  • S. Kealey, P.W. Miller, N.J. Long, C. Plisson, L. Martarello, A.D. Gee, Copper(I) scorpionate complexes and their application in palladium-mediated [(11)C]carbonylation reactions. Chem. Commun. (Camb) 25, 3696–3698 (2009)

    Article  Google Scholar 

  • A.F. Scott, L.L. Wilkening, B. Rubin, Inorg. Chem. 2533 (1969)

    Google Scholar 

  • M.I. Bruce, A.P.P. Ostazewski, J. Chem. Soc. Dlaton. Trans. 2433–2436 (1973)

    Google Scholar 

  • J. Eriksson, J. van den Hoek, A.D. Windhorst, Transition metal mediated synthesis using [11C]CO at low pressure—a simplified method for 11C-carbonylation. J. Label. Compd. Radiopharm. 55, 223–228 (2012)

    Article  Google Scholar 

  • J. Pardo, M.C. Lopez, J. Santafe, F.M. Royo, J.S. Urieta, Solubility of gases in butanols. I. Solubilities of nonpolar gases in 1-butanol from 263.15 to 303.15 K at 101.33 kPa partial pressure of gas. Fluid Phase Equilibria. 109, 29–37 (1995)

    Article  Google Scholar 

  • F. Gibanel, M.C. Lopez, F.M. Royo, J. Santafe, J.S. Urieta, Solubility of nonpolar gases in tetrahydrofuran at 0 to 30C and 101.33 kPa partial pressure of gas. J. Solution. Chem. 22, 211–217 (1993)

    Article  Google Scholar 

  • G. Kohler, C. Milstein, Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497 (1975)

    Article  Google Scholar 

  • K. Strebhardt, A. Ullrich, Paul ehrlich’s magic bullet concept: 100 years of progress. Nat. Rev. Cancer. 8, 473–480 (2008)

    Article  Google Scholar 

  • L. Shan, [(18)F]Fluorobenzoyl anti-HER2 Cys-diabody, molecular imaging and contrast agent database (MICAD), bethesda (MD) (2004)

    Google Scholar 

  • T. Olafsen, A.W. Wu, Novel antibody vectors for imaging. Semin. Nucl. Med. 40, 167–181 (2010)

    Article  Google Scholar 

  • G. Vaidyanathan, M.R. Zalutsky, Labeling proteins with fluorine-18 using N-succinimidyl 4-[18F]fluorobenzoate. Int. J. Rad. Appl. Instrum. B 19, 275–281 (1992)

    Article  Google Scholar 

  • A.V. Maerle, M.A. Simonova, V.D. Pivovarov, D.V. Voronina, P.E. Drobyazina, D.Y. Trofimov, L.P. Alekseev, S.K. Zavriev, D.Y. Ryazantsev, Development of the covalent antibody-DNA conjugates technology for detection of IgE and IgM antibodies by immuno-PCR. PLoS ONE 14, e0209860 (2019)

    Article  Google Scholar 

  • S. Madler, C. Bich, D. Touboul, R. Zenobi, Chemical cross-linking with NHS esters: a systematic study on amino acid reactivities. J. Mass. Spectrom. 44, 694–706 (2009)

    Article  Google Scholar 

  • G. Mattson, E. Conklin, S. Desai, G. Nielander, M.D. Savage, S. Morgensen, A practical approach to crosslinking. Mol. Biol. Rep. 17, 167–183 (1993)

    Article  Google Scholar 

  • L. Lang, W.C. Eckelman, One-step synthesis of 18F labeled [18F]-N-succinimidyl 4-(fluoromethyl)benzoate for protein labeling. Appl. Radiat. Isot. 45, 1155–1163 (1994)

    Article  Google Scholar 

  • C.W. Choi, L. Lang, J.T. Lee, K.O. Webber, T.M. Yoo, H.K. Chang, N. Le, E. Jagoda, C.H. Paik, I. Pastan et al., Biodistribution of 18F- and 125I-labeled anti-Tac disulfide-stabilized Fv fragments in nude mice with interleukin 2 alpha receptor-positive tumor xenografts. Cancer. Res. 55, 5323–5329 (1995)

    Google Scholar 

  • T. Olafsen, S.J. Sirk, S. Olma, C.K. Shen, A.M. Wu, ImmunoPET using engineered antibody fragments: fluorine-18 labeled diabodies for same-day imaging. Tumour. Biol. 33, 669–677 (2012)

    Article  Google Scholar 

  • C.J. Anderson, T.J. Wadas, E.H. Wong, G.R. Weisman, Cross-bridged macrocyclic chelators for stable complexation of copper radionuclides for PET imaging. Q. J. Nucl. Med. Mol. Imaging. 52, 185–192 (2008)

    Google Scholar 

  • T.K. Nayak, M.W. Brechbiel, Radioimmunoimaging with longer-lived positron-emitting radionuclides: potentials and challenges. Bioconjug. Chem. 20, 825–841 (2009)

    Article  Google Scholar 

  • A. Obata, S. Kasamatsu, D.W. McCarthy, M.J. Welch, H. Saji, Y. Yonekura, Y. Fujibayashi, Production of therapeutic quantities of (64)Cu using a 12 MeV cyclotron. Nucl. Med. Biol. 30, 535–539 (2003)

    Article  Google Scholar 

  • G.T. Hermanson, Bioconjugate Techniques, 2nd Edn, (2008), p. 499

    Google Scholar 

  • W.C. Cole, S.J. DeNardo, C.F. Meares, M.J. McCall, G.L. DeNardo, A.L. Epstein, H.A. O’Brien, M.K. Moi, Serum stability of 67Cu chelates: comparison with 111In and 57Co. Int. J. Rad. Appl. Instrum. B 13, 363–368 (1986)

    Article  Google Scholar 

  • G.J. Deblonde, M.P. Kelley, J. Su, E.R. Batista, P. Yang, C.H. Booth, R.J. Abergel, Spectroscopic and computational characterization of diethylenetriaminepentaacetic acid/transplutonium chelates: evidencing heterogeneity in the heavy actinide(III) series. Angew. Chem. Int. Ed. Engl. 57, 4521–4526 (2018)

    Article  Google Scholar 

  • M. Gut, J.P. Holland, Synthesis and photochemical studies on gallium and indium complexes of DTPA-PEG3-ArN3 for radiolabeling antibodies. Inorg. Chem. 58, 12302–12310 (2019)

    Article  Google Scholar 

  • M.L. Corman, S. Galandiuk, G.E. Block, E.D. Prager, G.J. Weiner, D. Kahn, H. Abdel-Nabi, E.P. Mitchell, V.L. Pascucci, A.N. Maroli et al., Immunoscintigraphy with 111In-satumomab pendetide in patients with colorectal adenocarcinoma: performance and impact on clinical management. Dis. Colon. Rectum. 37, 129–137 (1994)

    Article  Google Scholar 

  • E. Boros, J.P. Holland, Chemical aspects of metal ion chelation in the synthesis and application antibody-based radiotracers. J. Label. Comp. Radiopharm. 61, 652–671 (2018)

    Article  Google Scholar 

  • D.W. Margerum, G.R. Cayley, D.C. Weatherburn, G.K. Pagen-Kopf, Kinetics and mechanisms of complex formation and ligand exchange, in Coordination Chemistry, vol. 2, ed. by A.E. Martell (Chapter 1, American Chemical Society Monography 174, Washington, DC, 2 1978), p. 174

    Google Scholar 

  • C.F. Meares, M.K. Moi, H. Diril, D.L. Kukis, M.J. McCall, S.V. Deshpande, S.J. DeNardo, D. Snook, A.A. Epenetos, Macrocyclic chelates of radiometals for diagnosis and therapy. Br. J. Cancer. Suppl. 10, 21–26 (1990)

    Google Scholar 

  • N. Wu, C.S. Kang, I. Sin, S. Ren, D. Liu, V.C. Ruthengael, M.R. Lewis, H.S. Chong, Promising bifunctional chelators for copper 64-PET imaging: practical (64)Cu radiolabeling and high in vitro and in vivo complex stability. J. Biol. Inorg. Chem. 21, 177–184 (2016)

    Article  Google Scholar 

  • K.E. McCabe, B. Liu, J.D. Marks, J.S. Tomlinson, H. Wu, A.M. Wu, An engineered cysteine-modified diabody for imaging activated leukocyte cell adhesion molecule (ALCAM)-positive tumors. Mol. Imaging. Biol. 14, 336–347 (2012)

    Article  Google Scholar 

  • J.R. Nedrow, A.G. White, J. Modi, K. Nguyen, A.J. Chang, C.J. Anderson, Positron emission tomographic imaging of copper 64- and gallium 68-labeled chelator conjugates of the somatostatin agonist tyr3-octreotate. Mol. Imaging 13 (2014)

    Google Scholar 

  • T.J. Wadas, E.H. Wong, G.R. Weisman, C.J. Anderson, Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease. Chem. Rev. 110, 2858–2902 (2010)

    Article  Google Scholar 

  • R.D. Hancock, A.E. Martell, Ligand design for selective complexation of metal ions in aqueous solution. Chem. Rev. 89, 1875–1914 (1989)

    Article  Google Scholar 

  • A.E. Martell, R.M. Smith, Critical stability constants (Plenum Press, New York, 1974, 1975, 1976, 1977, 1982, 1989), pp. 1–6

    Google Scholar 

  • R.G. Pearson, J. Am. Chem. Soc. 85, 3533 (1963)

    Article  Google Scholar 

  • A. Ramasubbu, K.P. Wainwright, Structurally reinforced cyclen: a rigidly trans-co-ordinating twelve-membered macrocycle. J. Chem. Soc. Commun. 5, 277–278 (1982)

    Article  Google Scholar 

  • Z. Cai, C.J. Anderson, Chelators for copper readionuclides in positron emission tomography radiopharmaceuticals. J. Label. Compd. Radiopharm. 57, 224–230 (2014)

    Article  Google Scholar 

  • C.A. Boswell, X. Sun, W. Niu, G.R. Weisman, E.H. Wong, A.L. Rheingold, C.J. Anderson, Comparative in vivo stability of copper-64-labeled cross-bridged and conventional tetraazamacrocyclic complexes. J. Med. Chem. 47, 1465–1474 (2004)

    Article  Google Scholar 

  • J.S. Yoo, D. Pandya, EP Patent, 2,476,683 A472 (2012)

    Google Scholar 

  • I. Kambali, F.A. Wibowo, Comparison of gallium-68 production yields from (p,2n), (α,2n) and (p,n) nuclear reactions applicable for cancer diagnosis. J. Phys.: Conf. Ser. 1198, 022003 (2019)

    Google Scholar 

  • Z. Talip, C. Favaretto, S. Geistlich, N.P.V. Meulen, A step-by-step guide for the novel radiometal production for medical applications: case studies with (68)Ga, (44)Sc, (177)Lu and (161)Tb. Molecules 25 (2020)

    Google Scholar 

  • G.J. Meyer, H. Macke, J. Schuhmacher, W.H. Knapp, M. Hofmann, 68Ga-labelled DOTA-derivatised peptide ligands. Eur. J. Nucl. Med. Mol. Imaging. 31, 1097–1104 (2004)

    Article  Google Scholar 

  • W.A. Breeman, M. de Jong, E. de Blois, B.F. Bernard, M. Konijnenberg, E.P. Krenning, Radiolablelling DOTA-peptide with 68Ga. Eur. J. Nucl. Med. 32, 475–485 (2005)

    Article  Google Scholar 

  • K.P. Zhernosekov, D.V. Filosofov, R.P. Baum, P. Aschoff, H. Bihl, A.A. Razbash, M. Jahn, M. Jennewein, F. Rosch, Processing of generator-produced 68Ga for medical application. J. Nucl. Med. 48, 1741–1748 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wellington Pham .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pham, W. (2023). Principles for the Design of PET Probes. In: Principles of Molecular Probe Design and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-19-5739-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5739-0_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5738-3

  • Online ISBN: 978-981-19-5739-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics