Skip to main content

Living and Non-living Resources in Brazilian Deep Waters

  • Chapter
  • First Online:
Brazilian Deep-Sea Biodiversity

Abstract

In Brazil, deep-sea marine environments extend over 3.5 million km2, covering nearly 80% of Brazil’s Economic Exclusive Zone (EEZ) in the southern tropical and subtropical Atlantic Ocean. Over this area, the exploitation of both living and non-living resources have gradually increased and supported by natural geological resources, scientific knowledge, geopolitics, economic interests, and technological development. Deep-sea fisheries developed between 2000 and 2008 in the slope areas off southeastern and southern Brazil, declining afterwards mostly because fish and shellfish stocks were shown to be little productive and little resilient. In contrast, large deep (200–2000 m) and ultra-deep (> 2000 m) oil and gas reservoirs were discovered off southeastern Brazil (Campos and Santos Basins) and were increasingly exploited by the national industry. In recent years, over 80% of Brazil’s annual oil and gas production is extracted from these reservoirs, particularly from the so-called pre-salt layers. Deep-sea minerals off Brazil have long been mapped but the exploration and exploitation initiatives were incipient and focused on cobalt-rich ferromanganese crust deposits distributed in a large topographic feature known as Rio Grande Rise. Studies of the biotechnological potential of marine bacteria from the deep South Atlantic Ocean have focused mainly on hydrolytic enzymes and bioremediation. Their use in technological products in the next decade, however, still demands considerable technological development. A major concern, common to all deep-sea resources off Brazil, includes the effectiveness of the regulatory and management processes. Deficiencies, particularly regarding governance issues, have greatly hampered deep-sea fishing and may affect other activities as well. International management regimes, as required outside areas of national jurisdiction, are sometimes absent or need improvement to allow for the environmentally sustainable use of living and non-living deep-sea resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    These figures are estimates including the areas claimed in 2018 by Brazil to the UN Commission on the Limits of the Continental Shelf (e.g., the Rio Grande Rise area).

  2. 2.

    Evaluation of the Mineral Potential of the Brazilian Legal Continental Shelf – REMPLAC.

  3. 3.

    Evaluation of the Sustainable Potential of Living Resources in the Exclusive Economic Zone – REVIZEE.

  4. 4.

    Patterns and Processes of the Ecosystems of the Northern Mid-Atlantic.

  5. 5.

    Continental Margin Ecosystems.

  6. 6.

    Biogeography of Deep-Water Chemosynthetic Ecosystems Project.

  7. 7.

    Marine ferromanganese deposits: a major resource of E-tech elements.

  8. 8.

    Marine Biotechnology.

References

  • Abreu JGN, Corrêa ICS, Horn Filho NO et al (2014) Phosphorites of the Brazilian continental margin, southwestern Atlantic Ocean. Rev Bras Geofísica 32:539. https://doi.org/10.22564/rbgf.v32i3.508

  • Acha EM, Mianzan HW, Guerrero RA et al (2004) Marine fronts at the continental shelves of austral South America: physical and ecological processes. J Mar Syst. https://doi.org/10.1016/j.jmarsys.2003.09.005

  • Alberoni AAL, Jeck IK, Silva CG et al (2019) The new Digital Terrain Model (DTM) of the Brazilian Continental Margin: detailed morphology and revised undersea feature names. Geo-Mar Lett. https://doi.org/10.1007/s00367-019-00606-x

  • Almada GVMB, Bernadino AF (2017) Conservation of deep-sea ecosystems within offshore oil fields on the Brazilian margin, SW Atlantic. Biol Conserv 206:92–101. https://doi.org/10.1016/j.biocon.2016.12.026

    Article  Google Scholar 

  • Almeida AG, Kowsmann RO (2017) Geomorfologia do talude continental e do Plato de São Paulo. In: Kowsmann RO, Falcão APC, Fernandez MPC (Org) Caracterização ambiental regional da Bacia de Campos. 1ed. vol 1, Elsevier Editora Ltd, Rio de Janeiro, 2015, pp 33–66

    Google Scholar 

  • Angel MV (2003) The pelagic environment of the open ocean. In: Tyler PA (ed) Ecosystems of the world, Ecosystems of the deep oceans, vol 28. Elsevier, Amsterdam, pp 39–79

    Google Scholar 

  • ANP (2017) Anuário Estatístico 2017, Dados do desempenho das indústrias do petróleo, do gás natural e dos biocombustíveis e do sistema de abastecimento nacionais no período 2007–2016. http://www.anp.gov.br/wwwanp/publicacoes/anuario-estatistico/3819-anuario-estatistico-2017

  • Baker MC, Ramirez-Llodra EZ, Tyler P et al (2010) Biogeography, ecology, and vulnerability of chemosynthetic ecosystems in the Deep-Sea. In: McIntyre A (ed) Life in the World’s Oceans. Blackwell Publishing Ltd, Oxford, pp 161–182

    Chapter  Google Scholar 

  • Baturin GN (1982) Phosphorites on the sea floor: origin, composition and distribution, 1st edn. Elsevier Scientific Publishing Company, New York, 343 p

    Google Scholar 

  • Baturin GN, Bezrukov PL (1979) Phosphorites on the sea floor and their origin. Mar Geol 31:317–332. https://doi.org/10.1016/0025-3227(79)90040-9

    Article  CAS  Google Scholar 

  • Berkenheger I, Fischer U (2004) Competition for polymers among heterotrophic bacteria, isolated from particles of the Equatorial Atlantic. Int Microbiol 7:13–18

    CAS  PubMed  Google Scholar 

  • Berkenheger I, Heuchert AS, Fischer SU (2003) Heterotrophic particle-associated bacteria from South Atlantic: a community of marine microorganisms with a high organic carbon degradation potential. In: Wefer Z, Mulitza S, Ratmeyer V (eds) The South Atlantic in the late quaternary: reconstruction of material budgets and current systems. Springer-Verlag, New York

    Google Scholar 

  • Bernardino AF, Sumida PYG (2017) Deep risks from offshore development. Science 358(6361). https://doi.org/10.1126/science.aaq0779

  • Bernardino AF, Berenguer V, Ribeiro-Ferreira VP (2016) Bathymetric and regional changes in benthic macrofaunal assemblages on the deep Eastern Brazilian margin, SW Atlantic. Deep-Sea Res I 111:110–120. https://doi.org/10.1016/j.dsr.2016.02.016

    Article  Google Scholar 

  • Bernardino AF, Gama RN, Mazzuco ACA, Omena EP, Lavrado HP (2019) Submarine canyons support distinct macrofaunal assemblages on the deep SE Brazil margin. Deep-Sea Res I 149:103052. https://doi.org/10.1016/j.dsr.2019.05.012

    Article  CAS  Google Scholar 

  • Bhatnagara I, Kim SK (2012) Pharmacologically prospective antibiotic agents and their sources: a marine microbial perspective. Environ Toxicol Pharmacol 34:631–643. https://doi.org/10.1016/j.etap.2012.08.016

    Article  CAS  Google Scholar 

  • Bizzi LA, Schobbenhaus C, Vidotti RM et al (2003) Geologia, Tectônica e Recursos Minerais do Brasil. CPRM-SGB, Brasília, 674 p

    Google Scholar 

  • Boschen RE, Rowden AA, Clark MR et al (2013) Mining of deep-sea seafloor massive sulfides: a review of the deposits, their benthic communities, impacts from mining, regulatory frameworks and management strategies. Ocean Coast Manag 84:54–67. https://doi.org/10.1016/j.ocecoaman.2013.07.005

    Article  Google Scholar 

  • Branch TA, Hilborn R, Haynie AC et al (2006) Fleet dynamics and fishermen behavior: lessons for fisheries managers. Can J Fish Aquat Sci 63:1647–1668. https://doi.org/10.1139/f06-072

    Article  Google Scholar 

  • Brandini FP (1990) Hydrography and characteristics of the phytoplankton in shelf and oceanic waters off southeastern Brazil during winter (July/August 1982) and summer (February/March 1984). Hydrobiologia 196:111–148. https://doi.org/10.1007/BF00006105

    Article  CAS  Google Scholar 

  • Brasil (2018) Decreto N° 9.313, de 19 de março de 2018

    Google Scholar 

  • Campos EJ, Velhote D, Silveira IC (2000) Shelf break upwelling driven by Brazil Current cyclonic meanders. Geophys Res Lett 27(6):751–754. https://doi.org/10.1029/1999GL010502

    Article  Google Scholar 

  • Capítoli RR, Bemvenutti CE (2006) Associações de macroinvertebrados bentônicos de fundos inconsolidados da plataforma continental e talude superior no extremo sul do Brasil. Atlântica Rio Grande 28(1):47–59

    Google Scholar 

  • Castro BM, Lorenzzetti JA, Silveira ICA et al (2006) Estrutura termohalina e circulação na região entre o Cabo de São Tomé (RJ) e o Chuí (RS). In Rossi-Wongstchowski CRDB, Madureira LSP (Orgs.) O Ambiente Oceanográfico da Plataforma Continental e do Talude na Região Sudeste-Sul do Brasil, São Paulo, Editora da Universidade de São Paulo, pp 11–120

    Google Scholar 

  • Cavalcanti VMM (2011) Plataforma Continental. A última fronteira da mineração brasileira. Departamento Nacional de Produção Mineral, Ministério das Minas e Energia, Brasília, 104 p

    Google Scholar 

  • Cavalcanti JAD, Santos RV, Lacasse CM et al (2015) Potential mineral resources of phosphates and trace elements on the Rio Grande Rise, South Atlantic Ocean. In: Proceedings of 44 underwater mining: critical commodities for the future. Tampa Bay, Florida USA

    Google Scholar 

  • Cavalcanti GH, Arantes RCM, Falcão APC et al (2017) Ecossistemas de corais de águas profundas da Bacia de Campos. In: Curbelo-Fernandez MP, Braga AC (eds) Comunidades Demersais e Bioconstrutores: caracterização ambiental regional da Bacia de Campos, Atlântico Sudoeste, vol 4. Elsevier. Habitats, Rio de Janeiro, pp 43–85

    Chapter  Google Scholar 

  • CBD (2014) Ecologically or Biologically Significant Marine Areas (EBSAs): special places in the world’s oceans. Volume 2: Wider Caribbean and Western Mid-Atlantic Region. 86 pages

    Google Scholar 

  • CGEE (2007) Mar e Ambientes costeiros. Centro de Gestão e Estudos Estratégicos – CGEE, Brasília, 323 p

    Google Scholar 

  • CIRM (2009) Programa de Prospecção e Exploração de Recursos Minerais da Área Internacional do Atlântico Sul e Equatorial (PROAREA). Comissão Interministerial para os Recursos do Mar, Brasília, 34 p

    Google Scholar 

  • Clennell MB (2000) Hidrato de gás submarino: Natureza, ocorrência e perspectivas para exploração na margem continental Brasileira. Rev Bras Geofis 18:397–410. https://doi.org/10.1590/S0102-261X2000000300013

    Article  Google Scholar 

  • Cordes EE, Jones DOB, Schlacher TA et al (2016) Environmental impacts of the Deepwater oil and gas industry: a review to guide management strategies. Front Environ Sci 4(58):58. https://doi.org/10.3389/fenvs.2016.00058

    Article  Google Scholar 

  • Costa PAS, Braga AC, Melo MRS et al (2007) Assembléias de teleósteos demersais no talude da costa central brasileira. In: Costa PAS, Olavo G, Martins AS (eds) Biodiversidade da fauna marinha profunda na costa central brasileira. Rio de Janeiro: Museu Nacional. Série Livros, 24. Série Documentos Revizee: Score Central, pp 87–107

    Google Scholar 

  • Costa PAS, Mincaroni MM, Braga AC et al (2015) Megafaunal communities along a depth gradient on the tropical Brazilian continental margin. Mar Biol Res 11:1–12. https://doi.org/10.1080/17451000.2015.1062521

    Article  CAS  Google Scholar 

  • da Silva MAC, Cavalett A, Spinner A et al (2013) Phylogenetic identification of marine bacteria isolated from deep-sea sediments of the eastern South Atlantic Ocean. Springerplus 2:127. https://doi.org/10.1186/2193-1801-2-127

    Article  PubMed  PubMed Central  Google Scholar 

  • Dallagnolo R, Perez JAA, Pezzuto PR et al (2009) The deep-sea shrimp fishery off Brazil (Decapoda: Aristeidae): development and present status. Lat Am J Aquat Res 37:327–346. https://doi.org/10.3856/vol37-issue3-fulltext-5

    Article  Google Scholar 

  • Davy B, Pecher IA, Wood R et al (2010) Gas escape features off New Zealand – evidence for a massive release of methane from hydrates? Geophys Res Lett 37:L21309. https://doi.org/10.1029/2010GL045184

    Article  CAS  Google Scholar 

  • de Beer H, Hugo CJ, Jooste PJ et al (2006) Chryseobacterium piscium sp. nov., isolated from fish of the South Atlantic Ocean off South Africa. Int J Syst Evol Microbiol 56:1317–1322. https://doi.org/10.1099/ijs.0.64014-0

  • Debashish G, Malay S, Barindra S et al (2005) Marine enzymes. Adv Biochem Eng Biotechnol 96:189–218

    CAS  PubMed  Google Scholar 

  • Debbab A, Aly AH, Lin WH et al (2010) Bioactive compounds from marine bacteria and fungi. Microbial Biotechnol 3:44–563. https://doi.org/10.1111/j.1751-7915.2010.00179.x

    Article  CAS  Google Scholar 

  • Deming JW, Hada H, Colwell RR et al (1984) The ribonucleotide sequence of 5s rRNA from two strains of deep-sea barophilic bacteria. J Gen Microbiol 130:1911–1920. https://doi.org/10.1099/00221287-130-8-1911

    Article  CAS  PubMed  Google Scholar 

  • Dias JL (2005) Tectônica, estratigrafia e sedimentação no Andar Aptiano da margem leste brasileira. B Geoci Petrobras 13:7–25

    Google Scholar 

  • Dias MC, Perez JAAP (2016) Multiple strategies developed by bottom trawlers to exploit fishing resources in deep areas off Brazil. Lat Am J Aquat Res 44(5):1055–1068. https://doi.org/10.3856/vol44-issue5-fulltext-16

    Article  Google Scholar 

  • Druel E, Rochette J, Billé R et al (2013) A long and winding road. International discussions on the governance of marine biodiversity in areas beyond national jurisdiction. IDDRI Study 7, September 2013, 42 p

    Google Scholar 

  • Dunn DC, Ardron J, Bax N et al (2014) The convention on biological Diversity’s ecologically or biologically significant areas: origins, development, and current status. Mar Policy 49:137–145. https://doi.org/10.1016/j.marpol.2013.12.002

    Article  Google Scholar 

  • Dunn DC, Van Dover, CL, Etter RJ et al (2018) A strategy for conservation of biodiversity on mid-ocean ridges from deep-sea mining. Science Advances 4: eaar4313

    Google Scholar 

  • Evans GM, Furlong JC (2003) Environmental biotechnology: theory and application. Wiley, Chichester, pp 143–170

    Google Scholar 

  • Fang J, Kato C (2010) Deep-sea piezophilic bacteria: geomicrobiology and biotechnology. In: Jain SK, Khan AA, Rai MK (eds) Geomicrobiology. CRC Press, Boca Raton. https://doi.org/10.1201/b10193-3

    Chapter  Google Scholar 

  • Fang Z, Fang W, Liu J et al (2010) Cloning and characterization of a beta-glucosidase from marine microbial metagenome with excellent glucose tolerance. J Microbiol Biotechnol 9:1351–1358. https://doi.org/10.4014/jmb.1003.03011

    Article  CAS  Google Scholar 

  • FAO (2016) In: Thompson A, Sanders J, Tandstad M, Carocci F, Fuller J (eds) Vulnerable marine ecosystems: processes and practices in the high Seas, FAO fisheries and aquaculture technical paper no. 595. FAO, Rome

    Google Scholar 

  • Fenchel T, King GM, Blackburn TH (2012) Bacterial biogeochemistry: the ecophysiology of mineral cycling, 3rd edn. Academic, London

    Google Scholar 

  • Ferrer M, Martínez-Martínez M, Bargiela R et al (2016) Estimating the success of enzyme bioprospecting through metagenomics: current status and future trends. Microb Biotechnol 1:22–34. https://doi.org/10.1111/1751-7915.12309

    Article  CAS  Google Scholar 

  • Filippelli GM (2011) Phosphate rock formation and marine phosphorus geochemistry: the deep time perspective. Chemosphere 84:759–766. https://doi.org/10.1016/j.chemosphere.2011.02.019

    Article  CAS  PubMed  Google Scholar 

  • Fontana RL, Mussumeci A (1994) Hydrates offshore Brazil. Ann N Y Acad Sci 715:106–113. https://doi.org/10.1111/j.1749-6632.1994.tb38827.x

    Article  CAS  Google Scholar 

  • Friedline CJ, Franklin RB, Mccallister SL et al (2012) Microbial community diversity of the eastern Atlantic Ocean reveals geographic differences. Biogeosci Discuss 9:109–150. https://doi.org/10.5194/bgd-9-109-2012

    Article  Google Scholar 

  • Fuhrman JA, Hagström A (2008) Bacterial and archaeal community structure and its patterns. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley, Washington, DC

    Google Scholar 

  • Fujikura K, Yamanaka T, Sumida PYG et al (2017) Discovery of asphalt seeps in the deep Southwest Atlantic off Brazil. Deep-Sea Res II 146:35–44. https://doi.org/10.1016/j.dsr2.2017.04.002

    Article  CAS  Google Scholar 

  • Gao X, Gao W, Cui Z et al (2015) Biodiversity and degradation potential of oil-degrading bacteria isolated from deep-sea sediments of South Mid-Atlantic Ridge. Mar Pollut Bull 97:373–380. https://doi.org/10.1016/j.marpolbul.2015.05.065

    Article  CAS  PubMed  Google Scholar 

  • Giongo A, Haag T, Simão TLL et al (2016) Discovery of a chemosynthesis-based community in the western South Atlantic Ocean. Deep-Sea Res I 112:45–56. https://doi.org/10.1016/j.dsr.2015.10.010

    Article  CAS  Google Scholar 

  • Glenn CR, Follmi KB, Riggs SR et al (1994) Phosphorus and phosphorites: sedimentology and environments of formation. Eclogae Geol Helv 87:747–788

    Google Scholar 

  • Gómez-Sala B, Herranz C, Díaz-Freitas B et al (2016) Strategies to increase the hygienic and economic value of fresh fish: biopreservation using lactic acid bacteria of marine origin. Int J Food Microbiol 223:41–49. https://doi.org/10.1016/j.ijfoodmicro.2016.02.005

    Article  PubMed  Google Scholar 

  • Grauls D (2001) Gas hydrates: importance and applications in petroleum exploration. Mar Pet Geol 18:519–523. https://doi.org/10.1016/S0264-8172(00)00075-1

    Article  CAS  Google Scholar 

  • Guazelli W, Costa MPA (1978) Ocorrência de fosfatos no Platô do Ceará. In: Ocorrência de fosforita e de nódulos polimetálicos nos platôs do Ceará e de Pernambuco, vol 3. PETROBRAS, CENPES, DINTEP, Rio de Janeiro, pp 7–14

    Google Scholar 

  • Haimovici M, Ávila-da-Silva AO, Klippel S (2007) Instituições, Programas de Pesquisa e Embarcações. In: Haimovici M (Org) A Prospecção Pesqueira e Abundância de Estoques Marinhos no Brasil nas Décadas de 1960 e 1990: Levantamento de Dados e Avaliação Crítica. Ministério do Meio Ambiente, Brasília, 330 p

    Google Scholar 

  • Hein JR (2006) Ferromanganese crusts. In Scott SD (ed) Mineral deposit in the Sea: A futures. Report of the ECOR specialist panel on marine mining, ECOR symposium 2006, mar/2006, pp 7–9

    Google Scholar 

  • Hein JR, Koschinsky A (2013) Deep-Ocean ferromanganese crusts and nodules, Treatise on Geochemistry: Second Edition, 2nd edn. Elsevier Inc. https://doi.org/10.1016/B978-0-08-095975-7.01111-6

  • Hein JR, Koschinsky A, Bau M et al (2000) Cobalt-rich ferromanganese crusts in the Pacific. In: Cronan DS (ed) Handbook of marine mineral deposits. CRC Press, Boca Raton, pp 239–279

    Google Scholar 

  • Hein JR, Mizell K, Koschinsky et al (2013) Deep-ocean mineral deposits as a source of critical metals for high- and green-technology: comparisons with land-based resources. Ore Geol Rev 51:1–14. https://doi.org/10.1016/j.oregeorev.2012.12.001

    Article  Google Scholar 

  • Hein JR, Koschinsky A, Mikesell M et al (2016) Marine Phosphorites as potential resources for heavy rare earth elements and Yttrium. Fortschr Mineral 6:88. https://doi.org/10.3390/min6030088

    Article  CAS  Google Scholar 

  • Hovland M, Gallagher JW, Clennell MB et al (1997) Gas hydrates and free gas volumes in marine sediments: example from the Niger Delta front. Mar Pet Geol 14:245–255. https://doi.org/10.1016/S0264-8172(97)00012-3

    Article  CAS  Google Scholar 

  • IBGE (2011) Atlas geográfico das zonas costeiras e oceânicas do Brasil. IBGE, Diretoria de Geociências, Rio de Janeiro, 176 p

    Google Scholar 

  • ISBA (2010) Decision of the Assembly of the International Seabed Authority relating to the regulations on prospecting and exploration for polymetallic sulphides in the Area. ISBA/16/A/12/Rev.1

    Google Scholar 

  • ISBA (2012) Decision of the assembly of the international seabed authority relating to the regulations on prospecting and exploration for Cobalt-rich ferromanganese Crusts in the Area. ISBA/18/A/11

    Google Scholar 

  • ISBA (2013) Decision of the council of the international seabed authority relating to amendments to the regulations on prospecting and exploration for polymetallic nodules in the area and related matters. ISBA/19/C/17

    Google Scholar 

  • Jorgensen BB, Boetius A (2007) Feast and famine - microbial life in the deep-sea bed. Nat Rev Microbiol 5:770–781. https://doi.org/10.1038/nrmicro174

    Article  CAS  PubMed  Google Scholar 

  • Jovane L, Hein JR, Yeo IA et al (2019) Multidisciplinary scientific cruise to the Rio Grande rise. Front Mar Sci 6:252. https://doi.org/10.3389/fmars.2019.00252

    Article  Google Scholar 

  • Judd A, Hovland M (2007) Seabed fluid flow, seabed fluid flow: the impact on geology, biology, and the marine environment. Choice Rev 45(01):45-0294. https://doi.org/10.1017/CBO9780511535918

    Article  Google Scholar 

  • Krieg NR (2001) Identification of prokaryotes. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, Volume One: The archaea and the deeply branching and phototrophic bacteria, 2nd edn. Springer, New York

    Google Scholar 

  • Lai Q, Li S, Xu H et al (2014) Thioclava atlantica sp. nov., isolated from deep-sea sediment of the Atlantic Ocean. Antonie Van Leeuwenhoek 106:919–925. https://doi.org/10.1007/s10482-014-0261-x

  • Lavrado HP, Brasil ACS (2010a) Biodiversidade da Região Oceânica Profunda da Bacia de Campos: Macrofauna. SAG Serv, Rio de Janeiro, 232 p

    Google Scholar 

  • Lavrado HP, Brasil ACS (2010b) Biodiversidade da Região Oceânica Profunda da Bacia de Campos: Megafauna e Ictiofauna demersal. SAG Serv, Rio de Janeiro, 376 p

    Google Scholar 

  • Lavrado HP, Bernardino AF, Omena EP (2017a) Distribuição da comunidade megabêntica ao longo da plataforma e talude continental da Bacia de Campos. In: Curbelo-Fernandez MP, Braga AC (eds) Comunidades Demersais e Bioconstrutores: caracterização ambiental regional da Bacia de Campos, Atlântico Sudoeste, vol 4. Elsevier. Habitats, Rio de Janeiro, pp 139–166

    Chapter  Google Scholar 

  • Lavrado HP, Omena EP, Bernardino AF (2017b) Macrofauna bentônica do talude continental e cânions da Bacia de Campos. In: APC F, Lavrado HP (eds) Ambiente Bentônico: caracterização ambiental regional da Bacia de Campos, Atlântico Sudoeste, vol 3. Elsevier. Habitats, Rio de Janeiro, pp 259–306

    Chapter  Google Scholar 

  • Leis B, Heinze S, Angelov A et al (2015) Functional screening of hydrolytic activities reveals an extremely thermostable cellulase from a deep-sea archaeon. Front Bioeng Biotechnol 3:95. https://doi.org/10.3389/fbioe.2015.00095

    Article  PubMed  PubMed Central  Google Scholar 

  • Lenoble JP, Augris C, Cambon R, Saget P (1995) Marine mineral occurrences and deposits of the economic exclusive zones. Marmin a database, Ifremer. http://archimer.ifremer.fr/doc/00000/4285/

  • Li C, Lai Q, Li G et al (2014) Multilocus sequence analysis for the assessment of phylogenetic diversity and biogeography in Hyphomonas Bacteria from diverse marine environments. PLoS One 9:e101394. https://doi.org/10.1371/journal.pone.0101394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao L, Xu XW, Jiang XW et al (2011) Microbial diversity in deep-sea sediment from the cobalt-rich crust deposit region in the Pacific Ocean. FEMS Microbiol Ecol 78:565–585. https://doi.org/10.1111/j.1574-6941.2011.01186.x

    Article  CAS  PubMed  Google Scholar 

  • Lima AOS, Cabral A, Andreote FD et al (2013) Draft genome sequence of Bacillus stratosphericus LAMA 585, isolated from the Atlantic deep-sea. Genome Announc 1(3):e00204–e00213. https://doi.org/10.1128/genomeA.00204-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Lodge M, Johnson D, Le Gurun G et al (2014) Seabed mining: international Seabed Authority environmental management plan for the Clarion–Clipperton Zone. A partnership approach. Mar Policy 49:66–72. https://doi.org/10.1016/j.marpol.2014.04.006

    Article  Google Scholar 

  • Mahiques MM, Schattner U, Lazar M et al (2017) An extensive pockmark field on the upper Atlantic margin of Southeast Brazil: spatial analysis and its relationship with salt diapirism. Heliyon 3:e00257. https://doi.org/10.1016/j.heliyon.2017.e00257

    Article  PubMed  PubMed Central  Google Scholar 

  • Manhein FT (1972) Composition and origin of manganese-iron nodules and pavements on the Blake Plateau. In: Horn DR (ed) Papers from a conference on ferromanganese deposits on the ocean floor, the Office for the International Decade of ocean exploration. National Science Foundation, Washington, DC, 105 p

    Google Scholar 

  • Marchioro GB, Nunes MA, Dutra GF et al (2005) Avaliação dos impactos da exploração e produção de hidrocarbonetos no Banco dos Abrolhos e adjacências. Megadiversidade 1(2):225–310

    Google Scholar 

  • Mariano J, La Rovere E (2007) Oil and gas exploration and production activities in Brazil: the consideration of environmental issues in the bidding rounds promoted by the National Petroleum Agency. Ener Policy 35:2899–2911

    Article  Google Scholar 

  • Martínez-Musoles MJ, Perez JAAP, Pessatti M et al (2016) Why are Brazilian deep-demersal fish resources valuable? An analysis of the size of edible flesh and its chemical composition. Lat Am J Aquat Res 44(5):947–956. https://doi.org/10.3856/vol44-issue5-fulltext-7

    Article  Google Scholar 

  • Martins, AJM (2009) Análise da Informação sobre os Recursos Marinhos do Brasil: Informação sobre Recursos Marinhos Não Vivos. Projeto ESTAL – Projeto de Assistência Técnica ao Setor de Energia, Ministério de Minas e Energia, Banco Mundial, 54 p

    Google Scholar 

  • Martins LR, Barboza EG, Rosa MLCC (2006) Nódulos polimetálicos e outros depósitos de mar profundo: O retorno do interesse. Gravel 4:125–131. Porto Alegre. ISSN 16785975

    Google Scholar 

  • Martins AS, Costa PAS, Haimovici M et al (2017) Ecologia trófica do nécton demersal da plataforma e talude continental da Bacia de Campos. In: Curbelo-Fernandez MP, Braga AC (eds) Comunidades Demersais e Bioconstrutores: caracterização ambiental regional da Bacia de Campos, Atlântico Sudoeste, vol 4. Elsevier. Habitats, Rio de Janeiro, pp 167–185

    Chapter  Google Scholar 

  • Maslin M, Mikkelsen N, Vilela C et al (1998) Sea-level and gas-hydrate-controlled catastrophic sediment failures of the Amazon fan. Geology. https://doi.org/10.1130/00917613(1998)026<1107:SLAGHC>2.3.CO,2

  • Melo U, Guazelli W, Costa MPA (1978) Nódulos polimetálicos, com núcleo de fosforitas, no Platô de Pernambuco. Rio de Janeiro. PETROBRAS, CENPES, DINTEP. Série Projeto REMAC 3:15–32

    Google Scholar 

  • Menor EA, Costa MPA, Guazelli W (1979) Depósitos de fosfato, vol 10. PETROBRAS, CENPES, DINTEP, Rio de Janeiro, pp 51–72

    Google Scholar 

  • Menot L, Sibuet M, Carney RS et al (2010) New perceptions of continental margin biodiversity. In: McIntyre A (ed) Life in the World’s Oceans. Blackwell Publishing Ltd, Oxford, pp 79–101

    Chapter  Google Scholar 

  • Milani EJ, Brandão JASL, Zalán PV et al (2000) Petróleo na Margem Continental Brasileira: Geologia, Exploração, Resultados e Perspectivas. Rev Bras Geof 18(3):351–396. https://doi.org/10.1590/S0102-261X2000000300012

    Article  Google Scholar 

  • Miller DJ, Ketzer JM, Viana AR et al (2015) Natural gas hydrates in the Rio Grande Cone (Brazil): a new province in the western South Atlantic. Mar Pet Geol 67:187–196. https://doi.org/10.1016/j.marpetgeo.2015.05.012

    Article  CAS  Google Scholar 

  • Millimann JD, Amaral CAB (1974) Economic potential of Brazilian continental margin sediments. In: Proceedings of Congresso Brasileiro de Geologia, 28., 1974, Porto Alegre, RS, Brazil, 3: 335–344

    Google Scholar 

  • MMA (2006) Programa REVIZEE. Avaliação do Potencial Sustentável de Recursos Vivos na Zona Econômica Exclusiva. Relatório Executivo. Ministério do Meio Ambiente, Secretaria de Qualidade Ambiental. 279 p

    Google Scholar 

  • MMA (2007) Áreas prioritárias para conservação, uso sustentável e repartição de benefícios da biodiversidade brasileira. Atualização: Portaria MMA n° 9, de 23 de janeiro de 2007. Biodiversidade 31. Brasilia, 301 p

    Google Scholar 

  • Mohriak WU (2003) Bacias Sedimentares da Margem Continental Brasileira. In: Bizzi L, Schobbenhaus C, Vidotti RM, Goncalves JH (eds) Geologia, Tectônica e Recursos Minerais do Brasil: Brasília. CPRM (Geological Survey of Brazil), Brazil, pp 87–180

    Google Scholar 

  • Montserrat F, Millo C, Guilhon MP et al (2019) Deep-sea mining on the Rio Grande rise (southwestern Atlantic): a review on environmental baseline, ecosystem services and potential impacts. Deep-Sea Res I Oceanogr Res Pap 145:31–58

    Article  CAS  Google Scholar 

  • Morais JM (2013) Petróleo em águas profundas. Uma história tecnológica da Petrobras na exploração e produção offshore. Instituto de Pesquisa Econômica Aplicada – IPEA, Petrobras, Brasília, 424 p

    Google Scholar 

  • Morgan CL (2000) Resource estimates of the Clarion-Cliperton manganese nodule deposits. In: Cronan DS (ed) Handbook of mineral deposits. CRC Press, London, pp 145–170

    Google Scholar 

  • Nerurkar M, Joshi M, Pariti S et al (2013) Application of lipase from marine bacteria Bacillus sonorensis as an additive in detergent formulation. J Surfact Deterg 16:435–443. https://doi.org/10.1007/s11743-012-1434-0

    Article  CAS  Google Scholar 

  • Norse EA, Brooke S, Cheung WWL et al (2012) Sustainability of deep-sea fisheries. Mar Policy 36:307–320. https://doi.org/10.1016/j.marpol.2011.06.008

    Article  Google Scholar 

  • Notholt AJG (1980) Economic phosphatic sediments: mode of occurrence and stratigraphical distribution. J Geol Soc Lond 137:793–805. https://doi.org/10.1144/gsjgs.137.6.0793

    Article  Google Scholar 

  • Odisi EJ, Silvestrin MB, Takahashi RYU et al (2012) Bioprospection of cellulolytic and lipolytic South Atlantic deep-sea bacteria. Electron J Biotechnol 15:1–11. https://doi.org/10.2225/vol15-issue5-fulltext-17

    Article  Google Scholar 

  • Olavo G, Costa PAS, Martins AS (2005) Caracterização da pesca de linha e dinâmica das frotas linheiras da Bahia. Brasil. In: Costa PAS, Martins AS, Olavo G (eds) Pesca e potenciais de exploração de recursos vivos na região Central da Zona Econômica Exclusiva brasileira. Rio de Janeiro: Museu Nacional. pp 13–34, Série Livros,13. Série Documentos Revizee: Score Central

    Google Scholar 

  • Olavo G, Costa PAS, Martins AS et al (2011) Shelf-edge reefs as priority areas for conservation of reef fish diversity in the tropical Atlantic. Aquat Conserv Mar Freshwat Ecosyst 21:199–209. https://doi.org/10.1002/aqc.1174

    Article  Google Scholar 

  • Palma JJC, Pessanha IBM (2000) Depósitos ferromanganesíferos de oceano profundo. Rev Bras Geofis 18:431–446. https://doi.org/10.1590/S0102-261X2000000300015

    Article  Google Scholar 

  • Palma ED, Matano RP, Piola AR (2008) A numerical study of the Southwestern Atlantic Shelf circulation: stratified ocean response to local and offshore forcing. J Geophys Res 113. https://doi.org/10.1029/2007JC004720

  • Parrish I, Curtis RL (1982) Atmospheric circulation, upwelling and organic-rich rocks in the Mesozoic and Cenozoic eras. Palaeogeogr Palaeoclimatol Palaeoecol 40:31–66. https://doi.org/10.1016/0031-0182(82)90084-0

    Article  Google Scholar 

  • Perez JAA (2007) No take areas for demersal fisheries in deep areas of the Brazilian coast. In: Prates AP, Blanc D (eds) Aquatic protected areas as fisheries management tools. MMA – SBF, Brasília, pp 207–222

    Google Scholar 

  • Perez JAA, Wahrlich R (2005) A bycatch assessment of the gillnet monkfish Lophius gastrophysus fishery off southern Brazil. Fish Res 72:81–85. https://doi.org/10.1016/j.fishres.2004.10.011

    Article  Google Scholar 

  • Perez JAA, Pezzuto PR, Rodríguez LF et al (2001) Relatório da reunião técnica de ordenamento da pesca demersal nas regiões Sudeste e Sul do Brasil. In: Pezzuto PR, Perez JAA, Rodriguez LF, Valentíni H (eds) Reuniões de Ordenanento da Pesca Demersal no Sudeste e Sul do Brasil: 2000–2001, Notas Téc. FACIMAR, Universidade do Vale do Itajaí, Itajaí, 5, pp 1–34

    Google Scholar 

  • Perez JAA, Pezzuto PR, Andrade HA (2005) Biomass assessment of the monkfish Lophius gastrophysus stock exploited by a new deep-water fishery in southern Brazil. Fish Res 72:149–162. https://doi.org/10.1016/j.fishres.2004.11.004

  • Perez JAA, Pezzuto PR, Wahrlich R et al (2009) Deep-water fisheries in Brazil: history, status and perspectives. Lat Am J Aquat Res 37(Suppl. 3):513–541. https://doi.org/10.3856/vol37-issue3-fulltext-18

    Article  Google Scholar 

  • Perez JAA, Alves ES, Clark MR et al (2012) Patterns of life on the southern Mid-Atlantic Ridge: compiling what is known and addressing future research. Oceanography 25(4):16–31. https://doi.org/10.5670/oceanog.2012.102

    Article  Google Scholar 

  • Perez JAA, Pereira BN, Pereira DA et al (2013) Composition and diversity patterns of megafauna discards in the deep-water shrimp trawl fishery off Brazil. J Fish Biol 83:804–825. https://doi.org/10.1111/jfb.12141

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Díaz L, Eagles G (2017) South Atlantic paleobathymetry since early Cretaceous. Sci Rep 7:11819. https://doi.org/10.1038/s41598-017-11959-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinho M, Madureira LSP, Calliari L et al (2011) Depósitos fosfáticos marinhos na costa sudeste e sul do Brasil: potenciais áreas de ocorrência identificadas com dados de retroespalhamento acústico do fundo e sedimentológicos analisados sobre mapa batimétrico 3D. Rev Bras Geofís 29:113–126. https://doi.org/10.1590/S0102-261X2011000100008

    Article  Google Scholar 

  • Pio VM, Pezzuto PR, Wahrlich R (2016) Only two fisheries? Characteristics of the industrial bottom gillnet fisheries in southeastern and southern Brazil and their implications for management. Lat Am J Aquat Res 44(5):882–897. https://doi.org/10.3856/vol44-issue5-fulltext-2

    Article  Google Scholar 

  • Port D, Perez JAAP, Menezes JT (2016a) The evolution of the industrial trawl fishery footprint off southeastern and southern Brazil. Lat Am J Aquat Res 44(5):908–925. https://doi.org/10.3856/vol44-issue5-fulltext-4

    Article  Google Scholar 

  • Port D, Perez JAAP, Menezes JT (2016b) Energy direct inputs and greenhouse gas emissions of the main industrial trawl fishery of Brazil. Mar Pollut Bull. https://doi.org/10.1016/j.marpolbul.2016.03.062

  • Porto ACCH, Porto RAP, Bone RB (2007). Licenciamento das atividades de exploração e produção de petróleo. 4°. PDPETRO, Campinas, SP, pp 21–24

    Google Scholar 

  • Ramirez-Llodra E, Brandt A, Danovaro R et al (2010) Deep, diverse and definitely different: unique attributes of the world’s largest ecosystem. Biogeosciences 7(9):2851–2899. https://doi.org/10.5194/bg-7-2851-2010

    Article  Google Scholar 

  • Riggs SR, Sheldon RP (1990) Paleoceanographic and paleoclimatic controls of the temporal and geographic distribution of Upper Cenozoic continental margin phosphorites. In: Burnet WC, Riggs SR (eds) Phosphate deposits of the world. V.3. Neogene to modern phosphorites. Cambridge University Press, pp 207–222

    Google Scholar 

  • Rigonato J, Gama WA, Alvarenga DO et al (2016) Aliterella atlantica gen. nov., sp. nov. and Aliterella antarctica sp. nov., novel members of coccoid cyanobacteria. Int J Syst Evol Microbiol. https://doi.org/10.1099/ijsem.0.001066

  • Rocha J, Milliman JD, Santana et al (1975) Southern Brazil. Upper continental margin sedimentation off Brazil. Contr Sedimentol 4:117–150

    Google Scholar 

  • Rogers AD, Gianni M (2010) The implementation of UNGA Resolutions 61/105 and 64/72 in the Management of Deep-sea Fisheries on the High Seas. Report prepared for the Deep-Sea Conservation Coalition. International Program on the State of the Ocean, London, 97 p

    Google Scholar 

  • Roy S (1992) Environments and processes of manganese deposition. Econ Geol 87:1218–1236. https://doi.org/10.2113/gsecongeo.87.5.1218

    Article  CAS  Google Scholar 

  • Sad ARE, Silveira DP, Machado DAP et al (1998) Marine gas hydrates evidence along the Brazilian coast. In Proceedings of the AAPG international conference and exhibition. Rio de Janeiro, Brazil. November. pp 8–11

    Google Scholar 

  • Sant’Ana R, Perez JAA (2016) Surveying while fishing in the slope areas off Brazil: direct assessment of fish stock abundance from data recorded during commercial trawl fishing operations. Lat Am J Aquat Res 44(5):1039–1054. https://doi.org/10.3856/vol44-issue5-fulltext-15

    Article  Google Scholar 

  • Santana CI (1999) Mineral resources of the Brazilian continental margin and adjacent oceanic regions. In: Martins LR, Santana CI (eds) Non-Living resources of the southern Brazilian coastal zone and continental margin. IOC-UNESCO/OSNLR/SERG, Paris, pp 15–25

    Google Scholar 

  • Schattner U, Lazar M, Souza LAP et al (2016) Pockmark asymmetry and seafloor currents in the Santos Basin offshore Brazil. Geo-Mar Lett:1–8. https://doi.org/10.1007/s00367-016-0468-0

  • Schauer R, Bienhold C, Ramette A et al (2010) Bacterial diversity and biogeography in deep-sea surface sediments of the South Atlantic Ocean. ISME J 4:159–170. https://doi.org/10.1038/ismej.2009.106

    Article  CAS  PubMed  Google Scholar 

  • Schobbenhaus C (1984) Geologia do Brasil. Texto explicativo do mapa geológico do Brasil e da área oceânica adjacente incluindo depósitos minerais. Escala 1:2.500.000. In: Schobbenhaus C, Campos DA, Derze GR, Asmus HE (eds) Geologia do Brasil. Departamento Nacional de Produção Mineral, Brasília, pp 57–91

    Google Scholar 

  • Schon A, Fingerhut C, Hess WR (2002) Conserved and variable domains within divergent RNase P RNA gene sequences of Prochlorococcus strains. Int J Syst Evol Microbiol 52:1383–1389. https://doi.org/10.1099/ijs.0.01983-0

    Article  CAS  PubMed  Google Scholar 

  • Sharp A, Badalini G (2013) Using 3D seismic data to map shallow-marine geohazards: a case study from the Santos Basin, Brazil. Petrol Geosci 19:157–167. https://doi.org/10.1144/petgeo2011-063

    Article  Google Scholar 

  • Silveira ICA, Foloni Neto H, Costa TP et al (2017) Physical oceanography of Campos Basin continental slope and ocean region. In: Martins RP, Grossman-Matheson GS (eds) Meteorology and Oceanography: regional environmental characterization of the Campos Basin, Southwest Atlantic, vol 2. Elsevier. Habitats, Rio de Janeiro, pp 135–190

    Chapter  Google Scholar 

  • Slansky M (1992) Geology of sedimentary phosphates, 1st edn. Elsevier Science Publishing, New York, 210 p

    Google Scholar 

  • Smith LDS (1970) Clostridium oceanicum, sp. n., a sporeforming anaerobe isolated from marine sediments. J Bacteriol 103:811–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith CR, De Leo FC, Bernardino AF et al (2008a) Abyssal food limitation, ecosystem structure and climate change. TREE 23(9). https://doi.org/10.1016/j.tree.2008.05.002

  • Smith, C.R., Gaines, S.D., Friedlander, A et al (2008b). Preservation reference areas for nodule mining in the Clarion-Clipperton Zone: rationale and recommendations to the International Seabed Authority. Expert Participants in a Workshop to Desing Marine Protected Areas for Seamounts and the Abyssal Nodule Province in the Pacific High Seas. University of Hawaii at Manoa

    Google Scholar 

  • Souza KG, Martins LR, Cavalcante VM et al (2009) Recursos Não-Vivos da Plataforma Continental Brasileira e Áreas Oceânicas Adjacentes. Gravel, Edição Especial, Porto Alegre. 86 p

    Google Scholar 

  • Sumida PYG, Yoshinaga MY, Madureira LASP et al (2004) Seabed pockmarks associated with Deepwater corals off SE Brazilian continental slope, Santos Basin. Mar Geol 207:159–167. https://doi.org/10.1016/j.margeo.2004.03.006

    Article  Google Scholar 

  • Sumida PYG, Alfaro-Lucas JM, Shimabukuro M et al (2016) Deep-sea whale fall fauna from the Atlantic resembles that of the Pacific Ocean. Sci Rep 6:22139. https://doi.org/10.1038/srep22139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan T, Lu J, Nie K et al (2010) Biodiesel production with immobilized lipase: a review. Biotechnol Adv 28:628–634. https://doi.org/10.1016/j.biotechadv.2010.05.012

    Article  CAS  PubMed  Google Scholar 

  • Teixeira VN (2010) Caracterização do estado da arte em biotecnologia marinha no Brasil, Ministério da Saúde, MCTI – Ministério da Ciência, Tecnologia e Inovação, OPAS – Organização Pan-Americana da Saúde, 134 p

    Google Scholar 

  • Trappe J (1998) Phanerozoic phosphorite depositional systems, Springer lecture notes in earth sciences 76. Springer, New York/Berlin. 316 p

    Book  Google Scholar 

  • Trappe J (2001) A nomenclature system for granular phosphate rocks according to depositional texture. Sediment Geol 145:135–150. https://doi.org/10.1016/S0037-0738(01)00103-8

    Article  CAS  Google Scholar 

  • Tringe SG, Rubin EM (2005) Metagenomics: DNA sequencing of environmental samples. Nat Rev Genet 6:805–814. https://doi.org/10.1038/nrg1709

    Article  CAS  PubMed  Google Scholar 

  • United Nations General Assembly (1982) United Nations Convention on the Law of the Sea (UNCLOS), Ed.UN. http://www.un.org/depts/los/convention_agreements/texts/unclos/unclos_e.pdf

  • United Nations, General Assembly (2015) Development of an international legally binding instrument under the United Nations Convention on the Law of the Sea on the conservation and sustainable use of marine biological diversity of areas beyond national jurisdiction, A/69/292. http://www.un.org/en/ga/search/view_doc.asp?symbol=A/RES/69/292

  • Usui A, Someya M (1997) Distribution and composition of marine hydrogenetic and hydrothermal manganese deposits in the Northwest Pacific. Geol Soc Lond Spec Publ 119:177–198. https://doi.org/10.1144/GSL.SP.1997.119.01.12

    Article  CAS  Google Scholar 

  • Vecchione M, Bergstad OA, Byrkjedal I et al (2010) Biodiversity patterns and processes in the Mid-Atlantic Ridge. In: McIntyre A (ed) Life in the World`s Oceans. Blackwell Publishing Ltd, Oxford, pp 103–121

    Chapter  Google Scholar 

  • Visintin MR (2015) Análise de risco aplicada aos peixes vulneráveis à pesca de arrasto-duplo no Sudeste e Sul do Brasil. Dissertação de Mestrado, Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade do Vale do Itajaí, Itajaí, 134 p

    Google Scholar 

  • Visintin MR, Perez JAA (2016) Vulnerabilidade de espécies capturadas pela pesca de emalhe de fundo no Sudeste e Sul do Brasil: Produtividade-Suscetibilidade (PSA). Bol Inst Pesca, São Paulo 42(1):119–133

    Article  Google Scholar 

  • Wang L, Wang W, Lai Q et al (2010) Gene diversity of CYP153A and AlkB alkane hydroxylases in oil-degrading bacteria isolated from the Atlantic Ocean. Environ Microbiol 12:1230–1242. https://doi.org/10.1111/j.1462-2920.2010.02165.x

    Article  CAS  PubMed  Google Scholar 

  • Wedding LM, Friedlander A, Kittinger J et al (2013) From principles to practice: a spatial approach to systematic conservation planning in the deep-sea. Proc R Soc Lond B 280:20131684

    CAS  Google Scholar 

  • Wei C, Rowe GT, Escobar-Briones E et al (2010) Global patterns and predictions of seafloor biomass using random forests. PloS ONE:e15323. https://doi.org/10.1371/journal.pone.0015323

  • Xu H, Jiang L, Li S et al (2016) Diversity of culturable sulfur-oxidizing bacteria in deep-sea hydrothermal vent environments of the South Atlantic. Wei Sheng Wu Xue Bao 56:88–100

    PubMed  Google Scholar 

  • Zembruscki S (1979) Geomorfologia da Margem Continental Sul Brasileira e das Áreas Oceânicas Adjacentes In: Geomorfologia da Margem Continental Brasileira e das Áreas Oceânicas Adjacentes: Série Projeto REMAC. Rio de Janeiro: PETROBRAS, CENPES, DINTEP, n. 7, pp 129–177

    Google Scholar 

  • Zhang L, Wang Y, Liang J et al (2016) Degradation properties of various macromolecules of cultivable psychrophilic bacteria from the deep-sea water of the South Pacific Gyre. Extremophiles 20:663–671. https://doi.org/10.1007/s00792-016-0856-4

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Geological Survey of Brazil (CPRM) and the Brazilian National Agency of Petroleum, Natural Gas and Biofuels (ANP) for making available information essential for this review. The senior author is supported by CNPq – Ministry of Science, Technology, Innovation and Communication (process 310504/2016-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Angel A. Perez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Perez, J.A.A., Abreu, J.G.N., de Souza Lima, A.O., da Silva, M.A.C., de Souza, L.H.P., Bernardino, A.F. (2020). Living and Non-living Resources in Brazilian Deep Waters. In: Sumida, P.Y.G., Bernardino, A.F., De Léo, F.C. (eds) Brazilian Deep-Sea Biodiversity. Brazilian Marine Biodiversity . Springer, Cham. https://doi.org/10.1007/978-3-030-53222-2_8

Download citation

Publish with us

Policies and ethics