Skip to main content

Advertisement

Log in

Targeting PI3K/AKT/mTOR network for treatment of leukemia

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Objective

Increased activity of PI3K/AKT/mTOR pathway has been observed in a huge number of malignancies. This pathway can function as a prosurvival factor in leukemia stem cells and early committed leukemic precursors and its inhibition is regarded as a therapeutic approach. Accordingly, the aim of this review is to evaluate the PI3K/Akt/mTOR inhibitors used in leukemia models.

Discussion

Inhibition of the PI3K/AKT/mTOR pathway has been reported to have beneficial therapeutic effects in leukemias, both in vitro in leukemia cell lines and in vivo in animal models. Overall, the use of dual PI3K/mTOR inhibitor, dual Akt/RTK inhibitor, Akt inhibitor, selective inhibitor of PI3K, mTOR inhibitor and dual PI3K/PDK1 inhibitor in CML, AML, APL, CLL, B-ALL and T-ALL has a better therapeutic effect than conventional treatments.

Conclusions

Targeting the PI3K/Akt/mTOR pathway may have pro-apoptotic and antiproliferative effects on hematological malignancies. Furthermore, modulation of miRNA can be used as a novel therapeutic approach to regulate the PI3K/Akt/mTOR pathway. However, both aspects require further clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chang F, Lee JT, Navolanic PM, Steelman LS, Shelton JG, Blalock WL et al (2003) Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia 3:590–603 (PubMed PMID: 12646949, Epub 2003/03/21. eng)

    Article  Google Scholar 

  2. Liu P, Cheng H, Roberts TM, Zhao JJ (2009) Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 8(8):627–644 (PubMed PMID: 19644473, Pubmed Central PMCID: PMC3142564, Epub 2009/08/01. eng)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B (2010) The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol cell Biol 11(5):329–341 (PubMed PMID: 20379207, Epub 2010/04/10. eng)

    Article  CAS  PubMed  Google Scholar 

  4. Salari F, Shahjahani M, Shahrabi S, Saki N (2014) Minimal residual disease in acute lymphoblastic leukemia: optimal methods and clinical relevance, pitfalls and recent approaches. Med Oncol (Northwood, Lond, Engl) 31(11):266 (PubMed PMID: 25287907, Epub 2014/10/08. eng)

    Article  Google Scholar 

  5. Tasian SK, Teachey DT, Rheingold SR (2014) Targeting the PI3K/mTOR pathway in pediatric hematologic malignancies. Front Oncol. 4:108 (PubMed PMID: 24904824, Pubmed Central PMCID: PMC4032892, Epub 2014/06/07. eng)

    PubMed Central  PubMed  Google Scholar 

  6. Valent P (2011) Targeting of leukemia-initiating cells to develop curative drug therapies: straightforward but nontrivial concept. Curr Cancer Drug Targets 11(1):56–71 (PubMed PMID: 21062243, Epub 2010/11/11. eng)

    Article  CAS  PubMed  Google Scholar 

  7. Chen YL, Law PY, Loh HH (2005) Inhibition of PI3K/Akt signaling: an emerging paradigm for targeted cancer therapy. Curr Med Chem Anti-cancer Agents. 5(6):575–589 (PubMed PMID: 16305480, Epub 2005/11/25. eng)

    Article  CAS  Google Scholar 

  8. Fritsch R, de Krijger I, Fritsch K, George R, Reason B, Kumar MS et al (2013) RAS and RHO families of GTPases directly regulate distinct phosphoinositide 3-kinase isoforms. Cell 153(5):1050–1063 (PubMed PMID: 23706742, Pubmed Central PMCID: PMC3690480, Epub 2013/05/28. eng)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Juntilla MM, Patil VD, Calamito M, Joshi RP, Birnbaum MJ, Koretzky GA (2010) AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species. Blood. 115(20):4030–4038 (PubMed PMID: 20354168, Pubmed Central PMCID: PMC2875090, Epub 2010/04/01. eng)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Knowles MA, Platt FM, Ross RL, Hurst CD (2009) Phosphatidylinositol 3-kinase (PI3K) pathway activation in bladder cancer. Cancer Metastasis Rev 28(3–4):305–316 (PubMed PMID: 20013032. Pubmed Central PMCID: PMC2797439. Epub 2009/12/17)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell. 129(7):1261–1274 (PubMed PMID: 17604717, Pubmed Central PMCID: PMC2756685, Epub 2007/07/03. eng)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Inoki K, Li Y, Zhu T, Wu J, Guan KL (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol. 4(9):648–657 (PubMed PMID: 12172553, Epub 2002/08/13. eng)

    Article  CAS  PubMed  Google Scholar 

  13. Chandra HS, Heisterkamp NC, Hungerford A, Morrissette JJ, Nowell PC, Rowley JD et al (2011) Philadelphia Chromosome Symposium: commemoration of the 50th anniversary of the discovery of the Ph chromosome. Cancer Genet. 204(4):171–179 (PubMed PMID: 21536234, Pubmed Central PMCID: PMC3092778, Epub 2011/05/04. eng)

    Article  PubMed Central  PubMed  Google Scholar 

  14. Shahrabi S, Azizidoost S, Shahjahani M, Rahim F, Ahmadzadeh A, Saki N (2014) New insights in cellular and molecular aspects of BM niche in chronic myelogenous leukemia. Tumour Biol 35(11):10627–10633. doi:10.1007/s13277-014-2610-9 (Epub 2014 Sep 19. PubMed PMID: 25234716)

    Article  CAS  PubMed  Google Scholar 

  15. Kantarjian H, Giles F, Wunderle L, Bhalla K, O’Brien S, Wassmann B et al (2006) Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. New Engl J Med 354(24):2542–2551 (PubMed PMID: 16775235, Epub 2006/06/16. eng)

    Article  PubMed  Google Scholar 

  16. Gambacorti-Passerini C, Antolini L, Mahon FX, Guilhot F, Deininger M, Fava C et al (2011) Multicenter independent assessment of outcomes in chronic myeloid leukemia patients treated with imatinib. J Natl Cancer Inst. 103(7):553–561 (PubMed PMID: 21422402, Epub 2011/03/23. eng)

    Article  CAS  PubMed  Google Scholar 

  17. Abruzzese E, Cantonetti M, Morino L, Orlandi G, Tendas A, Del Principe MI et al (2003) CNS and cutaneous involvement in patients with chronic myeloid leukemia treated with imatinib in hematologic complete remission: two case reports. J Clin Oncol Off J Am Soc Clin Oncol. 21(22):4256–4258 (PubMed PMID: 14615464, Epub 2003/11/15. eng)

    Article  CAS  Google Scholar 

  18. O’Hare T, Deininger MW, Eide CA, Clackson T, Druker BJ (2011) Targeting the BCR-ABL signaling pathway in therapy-resistant Philadelphia chromosome-positive leukemia. Clin Cancer Res Off J Am Assoc Cancer Res. 17(2):212–221 (PubMed PMID: 21098337, Epub 2010/11/26. eng)

    Article  Google Scholar 

  19. Airiau K, Mahon FX, Josselin M, Jeanneteau M, Belloc F (2013) PI3K/mTOR pathway inhibitors sensitize chronic myeloid leukemia stem cells to nilotinib and restore the response of progenitors to nilotinib in the presence of stem cell factor. Cell Death Dis. 4:e827 (PubMed PMID: 24091670, Pubmed Central PMCID: PMC3824646, Epub 2013/10/05. eng)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Okabe S, Tauchi T, Tanaka Y, Kitahara T, Kimura S, Maekawa T et al (2014) Efficacy of the dual PI3K and mTOR inhibitor NVP-BEZ235 in combination with nilotinib against BCR-ABL-positive leukemia cells involves the ABL kinase domain mutation. Cancer Biol Ther. 15(2):207–215 (PubMed PMID: 24100660, Pubmed Central PMCID: PMC3928137, Epub 2013/10/09. eng)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Pellicano F, Scott MT, Helgason GV, Hopcroft LE, Allan EK, Aspinall-O’Dea M et al (2014) The antiproliferative activity of kinase inhibitors in chronic myeloid leukemia cells is mediated by FOXO transcription factors. Stem Cells (Dayton, Ohio) 32(9):2324–2337 (PubMed PMID: 24806995, Epub 2014/05/09. eng)

    Article  CAS  Google Scholar 

  22. Banerjee Mustafi S, Chakraborty PK, Raha S (2010) Modulation of Akt and ERK1/2 pathways by resveratrol in chronic myelogenous leukemia (CML) cells results in the downregulation of Hsp70. PloS One 5(1):e8719 (PubMed PMID: 20090934, Pubmed Central PMCID: PMC2806839, Epub 2010/01/22. eng)

    Article  PubMed Central  PubMed  Google Scholar 

  23. Huang FF, Zhang L, Wu DS, Yuan XY, Chen FP, Zeng H et al (2014) PTEN regulates BCRP/ABCG2 and the side population through the PI3K/Akt pathway in chronic myeloid leukemia. PloS One 9(3):e88298 (PubMed PMID: 24603487, Pubmed Central PMCID: PMC3945754, Epub 2014/03/08. eng)

    Article  PubMed Central  PubMed  Google Scholar 

  24. Smith M, Barnett M, Bassan R, Gatta G, Tondini C, Kern W (2004) Adult acute myeloid leukaemia. Crit Rev Oncol/Hematol. 50(3):197–222 (PubMed PMID: 15182826, Epub 2004/06/09. eng)

    Article  Google Scholar 

  25. Tamburini J, Elie C, Bardet V, Chapuis N, Park S, Broet P et al (2007) Constitutive phosphoinositide 3-kinase/Akt activation represents a favorable prognostic factor in de novo acute myelogenous leukemia patients. Blood. 110(3):1025–1028 (PubMed PMID: 17426258, Epub 2007/04/12. eng)

    Article  CAS  PubMed  Google Scholar 

  26. Xu Q, Simpson SE, Scialla TJ, Bagg A, Carroll M (2003) Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood. 102(3):972–980 (PubMed PMID: 12702506, Epub 2003/04/19. eng)

    Article  CAS  PubMed  Google Scholar 

  27. Martelli AM, Chiarini F, Evangelisti C, Cappellini A, Buontempo F, Bressanin D et al (2012) Two hits are better than one: targeting both phosphatidylinositol 3-kinase and mammalian target of rapamycin as a therapeutic strategy for acute leukemia treatment. Oncotarget. 3(4):371–394 (PubMed PMID: 22564882, Pubmed Central PMCID: PMC3380573, Epub 2012/05/09. eng)

    PubMed Central  PubMed  Google Scholar 

  28. Tazzari PL, Tabellini G, Bortul R, Papa V, Evangelisti C, Grafone T et al (2007) The insulin-like growth factor-I receptor kinase inhibitor NVP-AEW541 induces apoptosis in acute myeloid leukemia cells exhibiting autocrine insulin-like growth factor-I secretion. Leukemia. 21(5):886–896 (PubMed PMID: 17361225, Epub 2007/03/16. eng)

    CAS  PubMed  Google Scholar 

  29. Doepfner KT, Spertini O, Arcaro A (2007) Autocrine insulin-like growth factor-I signaling promotes growth and survival of human acute myeloid leukemia cells via the phosphoinositide 3-kinase/Akt pathway. Leukemia. 21(9):1921–1930 (PubMed PMID: 17581609, Epub 2007/06/22. eng)

    Article  CAS  PubMed  Google Scholar 

  30. Tamburini J, Chapuis N, Bardet V, Park S, Sujobert P, Willems L et al (2008) Mammalian target of rapamycin (mTOR) inhibition activates phosphatidylinositol 3-kinase/Akt by up-regulating insulin-like growth factor-1 receptor signaling in acute myeloid leukemia: rationale for therapeutic inhibition of both pathways. Blood. 111(1):379–382 (PubMed PMID: 17878402, Epub 2007/09/20. eng)

    Article  CAS  PubMed  Google Scholar 

  31. Chapuis N, Tamburini J, Cornillet-Lefebvre P, Gillot L, Bardet V, Willems L et al (2010) Autocrine IGF-1/IGF-1R signaling is responsible for constitutive PI3K/Akt activation in acute myeloid leukemia: therapeutic value of neutralizing anti-IGF-1R antibody. Haematologica. 95(3):415–423 (PubMed PMID: 20007139, Pubmed Central PMCID: PMC2833071, Epub 2009/12/17. eng)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Markovic A, MacKenzie KL, Lock RB (2005) FLT-3: a new focus in the understanding of acute leukemia. Int J Biochem Cell Biol. 37(6):1168–1172 (PubMed PMID: 15778081, Epub 2005/03/22. eng)

    Article  CAS  PubMed  Google Scholar 

  33. Sanden C, Ageberg M, Petersson J, Lennartsson A, Gullberg U (2013) Forced expression of the DEK–NUP214 fusion protein promotes proliferation dependent on upregulation of mTOR. BMC Cancer 13:440 (PubMed PMID: 24073922, Pubmed Central PMCID: PMC3849736, Epub 2013/10/01. eng)

    Article  PubMed Central  PubMed  Google Scholar 

  34. Matsunaga T, Takemoto N, Sato T, Takimoto R, Tanaka I, Fujimi A et al (2003) Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Nat Med. 9(9):1158–1165 (PubMed PMID: 12897778, Epub 2003/08/05. eng)

    Article  CAS  PubMed  Google Scholar 

  35. Nguyen LX, Sesay A, Mitchell BS (2014) Effect of CAL-101, a PI3Kdelta inhibitor, on ribosomal rna synthesis and cell proliferation in acute myeloid leukemia cells. Blood Cancer J. 4:e228 (PubMed PMID: 25014775, Epub 2014/07/12. eng)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Rosen DB, Harrington KH, Cordeiro JA, Leung LY, Putta S, Lacayo N et al (2013) AKT signaling as a novel factor associated with in vitro resistance of human AML to gemtuzumab ozogamicin. PloS One 8(1):e53518 (PubMed PMID: 23320091, Pubmed Central PMCID: PMC3539972, Epub 2013/01/16. eng)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Weisberg E, Liu Q, Zhang X, Nelson E, Sattler M, Liu F et al (2013) Selective Akt inhibitors synergize with tyrosine kinase inhibitors and effectively override stroma-associated cytoprotection of mutant FLT3-positive AML cells. PloS One 8(2):e56473 (PubMed PMID: 23437141, Pubmed Central PMCID: PMC3578845, Epub 2013/02/26. eng)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Stengel C, Jenner E, Meja K, Mayekar S, Khwaja A (2013) Proliferation of PTEN-deficient haematopoietic tumour cells is not affected by isoform-selective inhibition of p110 PI3-kinase and requires blockade of all class 1 PI3K activity. Br J Haematol. 162(2):285–289 (PubMed PMID: 23594092. Epub 2013/04/19. eng)

    Article  CAS  PubMed  Google Scholar 

  39. Xu Q, Thompson JE, Carroll M (2005) mTOR regulates cell survival after etoposide treatment in primary AML cells. Blood. 106(13):4261–4268 (PubMed PMID: 16150937. Pubmed Central PMCID: PMC1895255. Epub 2005/09/10. eng)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Gruppuso PA, Boylan JM, Sanders JA (2011) The physiology and pathophysiology of rapamycin resistance: implications for cancer. Cell Cycle (Georget, Tex) 10(7):1050–1058 (PubMed PMID: 21389767, Pubmed Central PMCID: 3100882)

    Article  CAS  Google Scholar 

  41. Kang SA, Pacold ME, Cervantes CL, Lim D, Lou HJ, Ottina K et al (2013) mTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin. Science (NY) 341(6144):1236566 (PubMed PMID: 23888043, Pubmed Central PMCID: PMC3771538, Epub 2013/07/28. eng)

    Article  Google Scholar 

  42. Bertacchini J, Guida M, Accordi B, Mediani L, Martelli AM, Barozzi P et al (2014) Feedbacks and adaptive capabilities of the PI3K/Akt/mTOR axis in acute myeloid leukemia revealed by pathway selective inhibition and phosphoproteome analysis. Leukemia 28(11):2197–2205. doi:10.1038/leu.2014.123 (Epub 2014 Apr 4. PubMed PMID: 24699302)

    Article  CAS  PubMed  Google Scholar 

  43. Altman JK, Sassano A, Kaur S, Glaser H, Kroczynska B, Redig AJ et al (2011) Dual mTORC2/mTORC1 targeting results in potent suppressive effects on acute myeloid leukemia (AML) progenitors. Clin Cancer Res Off J Am Assoc Cancer Res. 17(13):4378–4388 (PubMed PMID: 21415215, Pubmed Central PMCID: PMC3131493, Epub 2011/03/19. eng)

    Article  CAS  Google Scholar 

  44. Zeng Z, Shi YX, Tsao T, Qiu Y, Kornblau SM, Baggerly KA et al (2012) Targeting of mTORC1/2 by the mTOR kinase inhibitor PP242 induces apoptosis in AML cells under conditions mimicking the bone marrow microenvironment. Blood. 120(13):2679–2689 (PubMed PMID: 22826565, Pubmed Central PMCID: PMC3460689, Epub 2012/07/25. eng)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Chapuis N, Tamburini J, Green AS, Vignon C, Bardet V, Neyret A et al (2010) Dual inhibition of PI3K and mTORC1/2 signaling by NVP-BEZ235 as a new therapeutic strategy for acute myeloid leukemia. Clin Cancer Res Off J Am Assoc Cancer Res. 16(22):5424–5435 (PubMed PMID: 20884625, Epub 2010/10/05. eng)

    Article  CAS  Google Scholar 

  46. Lo-Coco F, Orlando SM, Platzbecker U (2013) Treatment of acute promyelocytic leukemia. New Engl J Med. 369(15):1472 (PubMed PMID: 24106948, Epub 2013/10/11. eng)

    Article  CAS  PubMed  Google Scholar 

  47. Scholl S, Bondeva T, Liu Y, Clement JH, Hoffken K, Wetzker R (2008) Additive effects of PI3-kinase and MAPK activities on NB4 cell granulocyte differentiation: potential role of phosphatidylinositol 3-kinase gamma. J Cancer Res Clin Oncol. 134(8):861–872 (PubMed PMID: 18288489, Epub 2008/02/22. eng)

    Article  CAS  PubMed  Google Scholar 

  48. Ozpolat B, Akar U, Steiner M, Zorrilla-Calancha I, Tirado-Gomez M, Colburn N et al (2007) Programmed cell death-4 tumor suppressor protein contributes to retinoic acid-induced terminal granulocytic differentiation of human myeloid leukemia cells. Mol Cancer Res MCR. 5(1):95–108 (PubMed PMID: 17259349, Epub 2007/01/30. eng)

    Article  CAS  Google Scholar 

  49. Pathania AS, Guru SK, Verma MK, Sharma C, Abdullah ST, Malik F et al (2013) Disruption of the PI3K/AKT/mTOR signaling cascade and induction of apoptosis in HL-60 cells by an essential oil from Monarda citriodora. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc. 62:246–254 (PubMed PMID: 23994707, Epub 2013/09/03. eng)

    Article  CAS  Google Scholar 

  50. Han S, Zhang G, Li M, Chen D, Wang Y, Ye W et al (2014) l-securinine induces apoptosis in the human promyelocytic leukemia cell line HL-60 and influences the expression of genes involved in the PI3K/AKT/mTOR signaling pathway. Oncol Rep. 31(5):2245–2251 (PubMed PMID: 24676995, Epub 2014/03/29. eng)

    CAS  PubMed  Google Scholar 

  51. Ma W, Wang DD, Li L, Feng YK, Gu HM, Zhu GM et al (2014) Caveolin-1 plays a key role in the oleanolic acid-induced apoptosis of HL-60 cells. Oncol Rep. 32(1):293–301 (PubMed PMID: 24842472, Epub 2014/05/21. eng)

    CAS  PubMed  Google Scholar 

  52. Herman SE, Gordon AL, Wagner AJ, Heerema NA, Zhao W, Flynn JM et al (2010) Phosphatidylinositol 3-kinase-delta inhibitor CAL-101 shows promising preclinical activity in chronic lymphocytic leukemia by antagonizing intrinsic and extrinsic cellular survival signals. Blood. 116(12):2078–2088 (PubMed PMID: 20522708, Pubmed Central PMCID: PMC2951855, Epub 2010/06/05. eng)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Oppezzo P, Dighiero G (2013) Role of the B-cell receptor and the microenvironment in chronic lymphocytic leukemia. Blood Cancer J. 3:e149 (PubMed PMID: 24056719, Pubmed Central PMCID: PMC3789209, Epub 2013/09/24. eng)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Brown JR, Byrd JC, Coutre SE, Benson DM, Flinn IW, Wagner-Johnston ND et al (2014) Idelalisib, an inhibitor of phosphatidylinositol 3-kinase p110delta, for relapsed/refractory chronic lymphocytic leukemia. Blood. 123(22):3390–3397 (PubMed PMID: 24615777, Pubmed Central PMCID: PMC4123414, Epub 2014/03/13. eng)

    Article  CAS  PubMed  Google Scholar 

  55. Zhuang J, Hawkins SF, Glenn MA, Lin K, Johnson GG, Carter A et al (2010) Akt is activated in chronic lymphocytic leukemia cells and delivers a pro-survival signal: the therapeutic potential of Akt inhibition. Haematologica. 95(1):110–118 (PubMed PMID: 19713228, Pubmed Central PMCID: PMC2805750, Epub 2009/08/29. eng)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Longo PG, Laurenti L, Gobessi S, Sica S, Leone G, Efremov DG (2008) The Akt/Mcl-1 pathway plays a prominent role in mediating antiapoptotic signals downstream of the B-cell receptor in chronic lymphocytic leukemia B cells. Blood. 111(2):846–855 (PubMed PMID: 17928528. Epub 2007/10/12. eng)

    Article  CAS  PubMed  Google Scholar 

  57. Ding W, Shanafelt TD, Lesnick CE, Erlichman C, Leis JF, Secreto C et al (2014) Akt inhibitor MK2206 selectively targets CLL B-cell receptor induced cytokines, mobilizes lymphocytes and synergizes with bendamustine to induce CLL apoptosis. Br J Haematol. 164(1):146–150 (PubMed PMID: 24111951, Pubmed Central PMCID: PMC3975807, Epub 2013/10/12. eng)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Plasschaert SL, Kamps WA, Vellenga E, de Vries EG, de Bont ES (2004) Prognosis in childhood and adult acute lymphoblastic leukaemia: a question of maturation? Cancer Treat Rev. 30(1):37–51 (PubMed PMID: 14766125, Epub 2004/02/10. eng)

    Article  PubMed  Google Scholar 

  59. Xing H, Yang X, Liu T, Lin J, Chen X, Gong Y (2012) The study of resistant mechanisms and reversal in an imatinib resistant Ph+ acute lymphoblastic leukemia cell line. Leuk Res. 36(4):509–513 (PubMed PMID: 22285507, Epub 2012/01/31. eng)

    Article  CAS  PubMed  Google Scholar 

  60. Fuka G, Kantner HP, Grausenburger R, Inthal A, Bauer E, Krapf G et al (2012) Silencing of ETV6/RUNX1 abrogates PI3K/AKT/mTOR signaling and impairs reconstitution of leukemia in xenografts. Leukemia. 26(5):927–933 (PubMed PMID: 22094587, Epub 2011/11/19. eng)

    Article  CAS  PubMed  Google Scholar 

  61. Neri LM, Cani A, Martelli AM, Simioni C, Junghanss C, Tabellini G et al (2014) Targeting the PI3K/Akt/mTOR signaling pathway in B-precursor acute lymphoblastic leukemia and its therapeutic potential. Leukemia. 28(4):739–748 (PubMed PMID: 23892718, Epub 2013/07/31. eng)

    Article  CAS  PubMed  Google Scholar 

  62. Simioni C, Cani A, Martelli AM, Zauli G, Tabellini G, McCubrey J et al. (2014) Activity of the novel mTOR inhibitor Torin-2 in B-precursor acute lymphoblastic leukemia and its therapeutic potential to prevent Akt reactivation. Oncotarget 5(20):10034–10047 (PubMed PMID: 25296981; PubMed Central PMCID: PMC4259403)

    PubMed Central  PubMed  Google Scholar 

  63. Teachey DT, Obzut DA, Cooperman J, Fang J, Carroll M, Choi JK et al (2006) The mTOR inhibitor CCI-779 induces apoptosis and inhibits growth in preclinical models of primary adult human ALL. Blood. 107(3):1149–1155 (PubMed PMID: 16195324, Pubmed Central PMCID: PMC1895910, Epub 2005/10/01. eng)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Saki N, Abroun S, Soleimani M, Mortazavi Y, Kaviani S, Arefian E (2014) The roles of miR-146a in the differentiation of Jurkat T-lymphoblasts. Hematology (Amst, Neth) 19(3):141–147 (PubMed PMID: 23796062, Epub 2013/06/26. eng)

    Article  CAS  Google Scholar 

  65. Pui CH, Robison LL, Look AT (2008) Acute lymphoblastic leukaemia. Lancet. 371(9617):1030–1043 (PubMed PMID: 18358930, Epub 2008/03/25. eng)

    Article  CAS  PubMed  Google Scholar 

  66. Zhao WL (2010) Targeted therapy in T-cell malignancies: dysregulation of the cellular signaling pathways. Leukemia. 24(1):13–21 (PubMed PMID: 19865108, Epub 2009/10/30. eng)

    Article  CAS  PubMed  Google Scholar 

  67. Gutierrez A, Sanda T, Grebliunaite R, Carracedo A, Salmena L, Ahn Y et al (2009) High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. Blood. 114(3):647–650 (PubMed PMID: 19458356, Pubmed Central PMCID: PMC2713461, Epub 2009/05/22. eng)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Zhang C, Ryu YK, Chen TZ, Hall CP, Webster DR, Kang MH (2012) Synergistic activity of rapamycin and dexamethasone in vitro and in vivo in acute lymphoblastic leukemia via cell-cycle arrest and apoptosis. Leuk Res. 36(3):342–349 (PubMed PMID: 22137317, Pubmed Central PMCID: PMC3264762, Epub 2011/12/06. eng)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Bressanin D, Evangelisti C, Ricci F, Tabellini G, Chiarini F, Tazzari PL et al (2012) Harnessing the PI3K/Akt/mTOR pathway in T-cell acute lymphoblastic leukemia: eliminating activity by targeting at different levels. Oncotarget. 3(8):811–823 (PubMed PMID: 22885370, Pubmed Central PMCID: PMC3478458, Epub 2012/08/14. eng)

    PubMed Central  PubMed  Google Scholar 

  70. Chiarini F, Grimaldi C, Ricci F, Tazzari PL, Evangelisti C, Ognibene A et al (2010) Activity of the novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235 against T-cell acute lymphoblastic leukemia. Cancer Res 70(20):8097–8107 (PubMed PMID: 20876803, Epub 2010/09/30. eng)

    Article  CAS  PubMed  Google Scholar 

  71. Palomero T, Dominguez M, Ferrando AA (2008) The role of the PTEN/AKT Pathway in NOTCH1-induced leukemia. Cell Cycle (Georget, Tex) 7(8):965–970 (PubMed PMID: 18414037, Pubmed Central PMCID: PMC2600414, Epub 2008/04/17. eng)

    Article  CAS  Google Scholar 

  72. Hales EC, Orr SM (2013) Larson Gedman A, Taub JW, Matherly LH. Notch1 receptor regulates AKT protein activation loop (Thr308) dephosphorylation through modulation of the PP2A phosphatase in phosphatase and tensin homolog (PTEN)-null T-cell acute lymphoblastic leukemia cells. J Biol Chem. 288(31):22836–22848 (PubMed PMID: 23788636, Pubmed Central PMCID: PMC3829367, Epub 2013/06/22. eng)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Shepherd C, Banerjee L, Cheung CW, Mansour MR, Jenkinson S, Gale RE et al (2013) PI3K/mTOR inhibition upregulates NOTCH-MYC signalling leading to an impaired cytotoxic response. Leukemia. 27(3):650–660 (PubMed PMID: 23038273, Epub 2012/10/06. eng)

    Article  CAS  PubMed  Google Scholar 

  74. Yoon P, Giafis N, Smith J, Mears H, Katsoulidis E, Sassano A et al (2006) Activation of mammalian target of rapamycin and the p70 S6 kinase by arsenic trioxide in BCR-ABL-expressing cells. Mol Cancer Ther. 5(11):2815–2823 (PubMed PMID: 17121928. Epub 2006/11/24. eng)

    Article  CAS  PubMed  Google Scholar 

  75. Antman KH (2001) Introduction: the history of arsenic trioxide in cancer therapy. The Oncologist. 6(Suppl 2):1–2 (PubMed PMID: 11331433, Epub 2001/05/02. eng)

    Article  CAS  PubMed  Google Scholar 

  76. Willems L, Chapuis N, Puissant A, Maciel TT, Green AS, Jacque N et al (2012) The dual mTORC1 and mTORC2 inhibitor AZD8055 has anti-tumor activity in acute myeloid leukemia. Leukemia. 26(6):1195–1202 (PubMed PMID: 22143671, Epub 2011/12/07. eng)

    Article  CAS  PubMed  Google Scholar 

  77. Sen S, Hassane DC, Corbett C, Becker MW, Jordan CT, Guzman ML (2013) Novel mTOR inhibitory activity of ciclopirox enhances parthenolide antileukemia activity. Exp Hematol. 41(9):799–807 (e4, PubMed PMID: 23660068, Pubmed Central PMCID: PMC3809917, Epub 2013/05/11. eng)

    Article  CAS  PubMed  Google Scholar 

  78. Zenz T, Mertens D, Kuppers R, Dohner H, Stilgenbauer S (2010) From pathogenesis to treatment of chronic lymphocytic leukaemia. Nat Rev Cancer. 10(1):37–50 (PubMed PMID: 19956173, Epub 2009/12/04. eng)

    CAS  PubMed  Google Scholar 

  79. Pellicano F, Scott MT, Helgason GV, Hopcroft LE, Allan EK, Aspinall-O’Dea M et al (2014) The anti-proliferative activity of kinase inhibitors in chronic myeloid leukaemia cells is mediated by FOXO transcription factors. Stem Cells (Dayton, Ohio) 32(9):2324–2337. doi:10.1002/stem.1748 (PubMed PMID: 24806995; PubMed Central PMCID: PMC4282530)

    Article  CAS  Google Scholar 

  80. Janes MR, Vu C, Mallya S, Shieh MP, Limon JJ, Li LS et al (2013) Efficacy of the investigational mTOR kinase inhibitor MLN0128/INK128 in models of B-cell acute lymphoblastic leukemia. Leukemia. 27(3):586–594 (PubMed PMID: 23090679, Pubmed Central PMCID: PMC3593948, Epub 2012/10/24. eng)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Yun SM, Jung JH, Jeong SJ, Sohn EJ, Kim B, Kim SH (2014) Tanshinone IIA induces autophagic cell death via activation of AMPK and ERK and inhibition of mTOR and p70 S6K in KBM-5 leukemia cells. Phytother Res PTR. 28(3):458–464 (PubMed PMID: 23813779, Epub 2013/07/03. eng)

    Article  CAS  Google Scholar 

  82. Di Leva G, Garofalo M, Croce CM (2014) MicroRNAs in cancer. Ann Rev Pathol. 9:287–314 (PubMed PMID: 24079833, Pubmed Central PMCID: PMC4009396, Epub 2013/10/02. eng)

    Article  Google Scholar 

  83. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al (2005) MicroRNA expression profiles classify human cancers. Nature. 435(7043):834–838 (PubMed PMID: 15944708, Epub 2005/06/10. eng)

    Article  CAS  PubMed  Google Scholar 

  84. Garzon R, Volinia S, Liu CG, Fernandez-Cymering C, Palumbo T, Pichiorri F et al (2008) MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood. 111(6):3183–3189 (PubMed PMID: 18187662, Pubmed Central PMCID: PMC2265455, Epub 2008/01/12. eng)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Alqurashi N, Hashimi SM, Wei MQ (2013) Chemical inhibitors and microRNAs (miRNA) targeting the mammalian target of Rapamycin (mTOR) pathway: potential for novel anticancer therapeutics. Int J Mol Sci. 14(2):3874–3900 (PubMed PMID: 23434669, Pubmed Central PMCID: PMC3588076, Epub 2013/02/26. eng)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Murray MY, Rushworth SA, MacEwan DJ (2012) Micro RNAs as a new therapeutic target towards leukaemia signalling. Cell signal. 24(2):363–368 (PubMed PMID: 21978953, Epub 2011/10/08. eng)

    Article  CAS  PubMed  Google Scholar 

  87. Jia CY, Li HH, Zhu XC, Dong YW, Fu D, Zhao QL et al (2011) MiR-223 suppresses cell proliferation by targeting IGF-1R. PloS one. 6(11):e27008 (PubMed PMID: 22073238, Pubmed Central PMCID: PMC3206888, Epub 2011/11/11. eng)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Li Y, Gao L, Luo X, Wang L, Gao X, Wang W et al (2013) Epigenetic silencing of microRNA-193a contributes to leukemogenesis in t(8;21) acute myeloid leukemia by activating the PTEN/PI3K signal pathway. Blood. 121(3):499–509 (PubMed PMID: 23223432, Epub 2012/12/12. eng)

    Article  CAS  PubMed  Google Scholar 

  89. Bai H, Xu R, Cao Z, Wei D, Wang C (2011) Involvement of miR-21 in resistance to daunorubicin by regulating PTEN expression in the leukaemia K562 cell line. FEBS Lett. 585(2):402–408 (PubMed PMID: 21187093, Epub 2010/12/29. eng)

    Article  CAS  PubMed  Google Scholar 

  90. Gong JN, Yu J, Lin HS, Zhang XH, Yin XL, Xiao Z et al (2014) The role, mechanism and potentially therapeutic application of microRNA-29 family in acute myeloid leukemia. Cell Death Differ. 1:100–112 (PubMed PMID: 24076586, Pubmed Central PMCID: PMC3857615, Epub 2013/10/01. eng)

    Article  Google Scholar 

  91. Green AS, Chapuis N, Maciel TT, Willems L, Lambert M, Arnoult C et al (2010) The LKB1/AMPK signaling pathway has tumor suppressor activity in acute myeloid leukemia through the repression of mTOR-dependent oncogenic mRNA translation. Blood. 116(20):4262–4273 (PubMed PMID: 20668229, Epub 2010/07/30. eng)

    Article  CAS  PubMed  Google Scholar 

  92. Kawashima I, Kirito K (2013) Metformin exerts anti-leukemic effects via direct inhibition of oncogenic kinase activity in leukemia cells derived from myeloproliferative neoplasms. Blood 122(21):2853

    Google Scholar 

  93. Leclerc GM, Leclerc GJ, Kuznetsov JN, DeSalvo J, Barredo JC (2013) Metformin induces apoptosis through AMPK-dependent inhibition of UPR signaling in ALL lymphoblasts. PloS One 8(8):e74420 (PubMed PMID: 24009772, Pubmed Central PMCID: PMC3751848, Epub 2013/09/07. eng)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Santidrian AF, Gonzalez-Girones DM, Iglesias-Serret D, Coll-Mulet L, Cosialls AM, de Frias M et al (2010) AICAR induces apoptosis independently of AMPK and p53 through up-regulation of the BH3-only proteins BIM and NOXA in chronic lymphocytic leukemia cells. Blood. 116(16):3023–3032 (PubMed PMID: 20664053, Epub 2010/07/29. eng)

    Article  CAS  PubMed  Google Scholar 

  95. Vakana E, Altman JK, Glaser H, Donato NJ, Platanias LC (2011) Antileukemic effects of AMPK activators on BCR-ABL-expressing cells. Blood. 118(24):6399–6402 (PubMed PMID: 22021366, Pubmed Central PMCID: PMC3236122, Epub 2011/10/25. eng)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Rosilio C, Lounnas N, Nebout M, Imbert V, Hagenbeek T, Spits H et al (2013) The metabolic perturbators metformin, phenformin and AICAR interfere with the growth and survival of murine PTEN-deficient T cell lymphomas and human T-ALL/T-LL cancer cells. Cancer Lett 336(1):114–126

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Najmaldin Saki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertacchini, J., Heidari, N., Mediani, L. et al. Targeting PI3K/AKT/mTOR network for treatment of leukemia. Cell. Mol. Life Sci. 72, 2337–2347 (2015). https://doi.org/10.1007/s00018-015-1867-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1867-5

Keywords

Navigation