Skip to main content

Plant Growth-Promoting Fungi (PGPF): Phytostimulation and Induced Systemic Resistance

  • Chapter
  • First Online:
Plant-Microbe Interactions in Agro-Ecological Perspectives

Abstract

The associations between plants and multipurpose plant growth-promoting fungi (PGPF) have been proven extremely to be beneficial to plants. This review describes new knowledge about the interactions between plants and their associated PGPF in determining improved plant growth and induced systemic resistance (ISR) to invading pathogens. It has been shown that fungi of heterogeneous classes and habitats function as PGPF. The well-known fungal genera Aspergillus, Fusarium, Penicillium, Piriformospora, Phoma, and Trichoderma are the most frequently reported PGPF. On comparing the results of different studies, it appears that plant-PGPF interactions can have positive effects on belowground and aboveground plant organs. The most commonly reported effects are significant improvement in germination, seedling vigor, biomass production, root hair development, photosynthetic efficiency, flowering, and yield. Some strains have the abilities to improve plant biochemical composition. It has now known that PGPF can also control numerous foliar and root pathogens by triggering ISR in the host plants. These capabilities are driven by their abilities to enhance nutrient uptake and phytohormone production as well as to reprogram plant gene expression, through differential activation of plant signaling pathways. The PGPF-triggered plant growth and ISR responses to pathogen attack may work through genetype-dependent manner in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahmed SA, Pérez C, Candela ME (2000) Evaluation of induction of systemic resistance in pepper plants (Capsicum annuum) to Phytophthora capsici using Trichoderma harzianum and its relation with capsidiol accumulation. Eur J Plant Pathol 106:817–824

    Article  Google Scholar 

  • Aikawa S, Kobayashi MJ, Satake A, Shimizu KK, Kudoh H (2011) Robust control of the seasonal expression of the Arabidopsis FLC gene in a fluctuating environment. Proc Natl Acad Sci U S A 107:11632–11637

    Article  Google Scholar 

  • Akhter W, Bhuiyan MKA, Sultana F, Hossain MM (2015) Integrated effect of microbial antagonist, organic amendment and fungicide in controlling seedling mortality (Rhizoctonia solani) and improving yield in pea (Pisum sativum L.) C R Biol 338:21–28

    Article  PubMed  Google Scholar 

  • Aktar MW, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2:1–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Alberton D, Müller-Santos M, Brusamarello-Santos LCC, Valdameri G, Cordeiro FA et al (2013) Comparative proteomics analysis of the rice roots colonized by Herbaspirillum seropedicae strain SmR1 reveals induction of the methionine recycling in the plant host. J Proteome Res 12:4757–4768

    Article  CAS  PubMed  Google Scholar 

  • Alfano G, Ivey MLL, Cakir C, Bos JI, Miller SA et al (2007) Systemic modulation of gene expression in tomato by Trichoderma hamatum 382. Phytopathology 97:429–437

    Article  CAS  PubMed  Google Scholar 

  • Alizadeh H, Behboudi K, Ahmadzadeh M, Javan-Nikkhaha M, Zamioudis C et al (2013) Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and Pseudomonas sp. Ps14. Biol Control 65:14–23

    Article  Google Scholar 

  • Aloni R, Langhans M, Aloni E, Dreieicher E, Ullrich CI (2005) Root-synthesized cytokinin in Arabidopsis is distributed in the shoot by the transpiration stream. J Exp Bot 56:1535–1544

    Article  CAS  PubMed  Google Scholar 

  • Andjic V, Cole AL, Klena JD (2005) Taxonomic identity of the sterile red fungus inferred using nuclear rDNA ITS1 sequences. Mycol Res 109(2):200–204

    Article  CAS  PubMed  Google Scholar 

  • Anwer MA, Khan MR (2013) Aspergillus niger as tomato fruit (Lycopersicum esculentum Mill.) quality enhancer and plant health promoter. J Postharvest Technol 01:036–051

    Google Scholar 

  • Aranega-Bou P, Leyva MO, Finiti I, García-Agustín P, González-Bosch C (2014) Priming of plant resistance by natural compounds: hexanoic acid as a model. Front Plant Sci 5:488

    Article  PubMed  PubMed Central  Google Scholar 

  • Arc E, Sechet J, Corbineau F, Rajjou L, Marion-Poll A (2013) ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination. Front Plant Sci 4:63

    PubMed  PubMed Central  Google Scholar 

  • Arredondo A, Rocha-Ruíz A, Flores J (2007) Rompimiento de Latencia en Semillas de Cinco Especies de Cactáceas del Desierto Chihuahuense, Folleto Técnico No. 32. Campo Experimental San Luis. CIRNE-INIFAP, San Luis Potosí

    Google Scholar 

  • Athman SY, Dubois T, Viljoen A, Nico Labuschagne N, Coyne D et al (2006) In vitro antagonism of endophytic Fusarium oxysporum isolates against the burrowing nematode Radopholus similis. Nematology 8:627–636

    Article  Google Scholar 

  • Attitalla IH, Johnson P, Brishammar S, Quintanilla P (2001) Systemic resistance to Fusarium wilt in tomato induced by Phytophthora cryptogea. J Phytopathol 149:373–380

    Article  Google Scholar 

  • Babu AG, Kim SW, Yadav DR, Hyum U, Adhikari M et al (2015) Penicillium menonorum: A novel fungus to promote growth and nutrient management in cucumber plants. Mycobiology 43(1):49–56

    Article  PubMed  PubMed Central  Google Scholar 

  • Bae H, Sicher RC, Kim MS, Soo-Hyung K, Strem M et al (2009) The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J Exp Bot 60(11):3279–3295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bal U, Altintas S (2006) Effects of Trichoderma harzianum on yield and fruit quality characteristics of tomato (Lycopersicon esculentum Mill) grown in an unheated greenhouse. Aust J Exp Agric 46:131–136

    Article  Google Scholar 

  • Baldi A, Farkya S, Jain A (2010) Enhanced production of podophyllotoxins by co-culture of transformed Linum album cells with plant growth-promoting fungi. Pure Appl Chem 82:227–241

    Article  CAS  Google Scholar 

  • Banani HB, Roatti B, Ezzahi O et al (2013) Characterization of resistance mechanisms activated by Trichoderma harzianum T39 and benzothiadiazole to downy mildew in different grapevine cultivars. Plant Pathol 63:334–343

    Article  CAS  Google Scholar 

  • Barazani O, Benderoth M, Groten K, Giovannini O, Gessler G et al (2005) Piriformospora indica and Sebacina vermifera increase growth performance at the expense of herbivore resistance in Nicotiana attenuata. Oecologia 146:234–243

    Article  PubMed  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Baskin JA, Baskin C (2004) A classification system of seed dormancy. Seed Sci Res 14:1–16

    Google Scholar 

  • Baskin CC, Baskin JM (2014) Seeds: Ecology, biogeography, and evolution of dormancy and germination. Elsevier, San Diego

    Google Scholar 

  • Beaudoin N, Serizet C, Gosti F, Giraudat J (2000) Interactions between abscisic acid and ethylene signaling cascades. Plant Cell 12:1103–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benhamou N, Garand C, Goulet A (2002) Ability of nonpathogenic Fusarium oxysporum strain Fo47 to induce resistance against Pythium ultimum infection in cucumber. Appl Environ Microbiol 68:4044–4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benhamou N, le Floch G, Vallance J, Gerbore J, Grizard D et al (2012) Pythium oligandrum: an example of opportunistic success. Microbiology 158:2679–2694

    Article  CAS  PubMed  Google Scholar 

  • Bennett AJ, Mead A, Whipps JM (2009) Performance of carrot and onion seed primed with beneficial microorganisms in glasshouse and field trials. Biol Control 51:417–426

    Article  Google Scholar 

  • Bent E (2006) Induced systemic resistance mediated by plant growth-promoting rhizobacteria (PGPR) and fungi (PGPF). In: Tuzun S, Bent E (eds) Multigenic and induced systemic resistance in plants. Springer, New York, pp 225–258

    Chapter  Google Scholar 

  • Bhuyan SK, Bandyopadhyay P, Kumar P, Mishra DK, Prasad R et al (2015) Interaction of Piriformospora indica with Azotobacter chroococcum. Sci Rep 5:13911

    Article  Google Scholar 

  • Bitas V, McCartney N, Li N, Demers J, Jung-Eun K (2015) Fusarium oxysporum volatiles enhance plant growth via affecting auxin transport and signaling. Front Microbiol 6:1248

    Article  PubMed  PubMed Central  Google Scholar 

  • Boby VU, Bagyaraj DJ (2003) Biological control of root-rot of Coleus forskohlii Briq. using microbial inoculants. World J Microbiol Biotechnol 19:175–180

    Article  CAS  Google Scholar 

  • Björkman T, Blanchard LM, Harman GE (1998) Growth enhancement of shrunken-2 sweet corn when colonized with Trichoderma harzianum 1295–22: effect of environmental stress. J Am Soc Hort Sci 123:35–40

    Google Scholar 

  • Brotman Y, Landau U, Cuadros-Inostroza Á, Takayuki T, Fernie AR et al (2013) Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathog 9:e1003221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruce TJA, Matthes MC, Napier JA, Pickett JA (2007) Stressful “memories” of plants: evidence and possible mechanisms. Plant Sci 173:603–608

    Article  CAS  Google Scholar 

  • Brys R, Shefferson R, Jacquemyn H (2011) Impact of herbivory on flowering behaviour and life history trade-offs in a polycarpic herb: a 10-year experiment. Oecologia 166:293–303

    Article  PubMed  Google Scholar 

  • Camehl I, Sherameti I, Venus Y, Bethke G, Varma A et al (2010) Ethylene signaling and ethylene-targeted transcription factors are required to balance beneficial and non-beneficial traits in the symbiosis between the endophytic fungus Piriformospora indica and Arabidopsis thaliana. New Phytol 185:1062–1073

    Article  CAS  PubMed  Google Scholar 

  • Camehl I, Drzewiecki C, Vadassery J, Shahollari B, Sherameti I et al (2011) The OXI1 kinase pathway mediates Piriformospora indica-induced growth promotion in Arabidopsis. PLoS Pathog 7:e1002051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardinale F, Ferraris L, Valentino D, Tamietti G (2006) Induction of systemic resistance by a hypovirulent Rhizoctonia solani isolate in tomato. Physiol Mol Plant Pathol 69:160–171

    Article  CAS  Google Scholar 

  • Cavello IA, Crespo JM, García SS, José MZ, María FL et al (2015) Plant growth promotion activity of keratinolytic fungi growing on a recalcitrant waste known as (hair waste). Biotechnol Res Int 2015:952921

    Article  PubMed  PubMed Central  Google Scholar 

  • Chamam A, Sanguin H, Bellvert F et al (2013) Plant secondary metabolite profiling evidences strain-dependent effect in the Azospirillum-Oryza sativa association. Phytochemistry 87:65–77

    Article  CAS  PubMed  Google Scholar 

  • Chandanie WA, Kubota M, Hyakumachi M (2005) Interaction between arbuscular mycorrhizal fungus Glomus mosseae and plant growth promoting fungus Phoma sp. on their root colonization and growth promotion of cucumber (Cucumis sativus L.) Mycoscience 46:201–204

    Article  Google Scholar 

  • Chandanie WA, Kubota M, Hyakumachi M (2009) Interactions between the arbuscular mycorrhizal fungus Glomus mosseae and plant growth-promoting fungi and their significance for enhancing plant growth and suppressing damping-off of cucumber (Cucumis sativus L.) Appl Soil Ecol 41:336–341

    Article  Google Scholar 

  • Chang YC, Baker R, Kleifeld O, Chet I (1986) Increased growth of plants in the presence of the biological control agent Trichoderma harzianum. Plant Dis 70:145–148

    Article  Google Scholar 

  • Chirino-Valle I, Kandula D, Littlejohn C et al (2016) Potential of the beneficial fungus Trichoderma to enhance ecosystem-service provision in the biofuel grass Miscanthus x giganteus in agriculture. Sci Rep 6:25109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou LC, Chang DCN (2004) Asymbiotic and asymbiotic seed germination of Anoectochilus formosanus Hayata, Haemaria discolor var. dawsoniana and their F1 hybrids. Bot Bull Acad Sin 45:143–147

    Google Scholar 

  • Choudhary DK, Prakash A, Johri BN (2007) Induced systemic resistance (ISR) in plants: mechanism of action. Indian J Microbiol 47:289–297

    Article  CAS  PubMed  Google Scholar 

  • Chuang CC, Kuo YL, Chao CC, Chao WL (2007) Solubilization of inorganic phosphates and plant growth promotion by Aspergillus niger. Biol Fertil Soils 43:575–584

    Article  CAS  Google Scholar 

  • Combes-Meynet E, Pothier JF, Mënne-Loccoz Y, Prigent-Combaret C (2011) The Pseudomonas secondary metabolite 2,4-diacetylphloroglucinol is a signal inducing rhizoplane expression of Azospirillum genes involved in plant-growth promotion. Mol Plant-Microbe Interact 24:271–284

    Article  CAS  PubMed  Google Scholar 

  • Conrath U (2009) Priming of induced plant defense responses. Adv Bot Res 51:361–395

    Article  CAS  Google Scholar 

  • Conrath U, Beckers GJM, Flors V et al (2006) Priming: getting ready for battle. Mol Plant-Microbe Interact 19:1062–1071

    Article  CAS  PubMed  Google Scholar 

  • Contesto C, Desbrosses G, Lefoulon C et al (2008) Effects of rhizobacterial ACC deaminase activity on Arabidopsis indicate that ethylene mediates local root responses to plant growth-promoting rhizobacteria. Plant Sci 1-2:178–189

    Article  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez LI, Cortés-Penagos C, López-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Beltrán-Peña E, Herrera-Estrella A, López-Bucio J (2011) Trichoderma-induced plant immunity likely involves both hormonal- and camalexin-dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungi Botrytis cinerea. Plant Signal Behav 6(10):1554–1563.

    Google Scholar 

  • Corradi N, Bonfante P (2012) The arbuscular mycorrhizal symbiosis: origin and evolution of a beneficial plant infection. PLoS Pathog 8:e1002600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crimmins T, Crimmins M, Bertelsen C (2013) Spring and summer patterns in flowering onset, duration, and constancy across a water-limited gradient. Am J Bot 100:1137–1147

    Article  PubMed  Google Scholar 

  • D’Aloia M, Bonhomme D, Bouché F (2011) Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FT paralogue TSF. Plant J 65:972–979

    Article  PubMed  CAS  Google Scholar 

  • Dababat AEA, Sikora RA (2007) Influence of the mutualistic endophyte Fusarium oxysporum 162 on Meloidogyne incognita attraction and invasion. Nematology 9:771–776

    Article  Google Scholar 

  • Damari-Weissler H, Rachamilevitch S, Aloni R, German MA, Cohen S, Zwieniecki MA et al (2009) LeFRK2 is required for phloem and xylem differentiation and the transport of both sugar and water. Planta 230:795–805

    Article  CAS  PubMed  Google Scholar 

  • Das A, Kamas S, Akhtar NS (2012) The root endophyte fungus Piriformospora indica leads to early flowering, higher biomass and altered secondary metabolites of the medicinal plant Coleus forskohlii. Plant Signal Behav 7:1–10

    Article  CAS  Google Scholar 

  • de Boer W, Folman LB, Richard C et al (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29:795–811

    Article  PubMed  CAS  Google Scholar 

  • Delgado-Sánchez P, Ortega-Amaro MA, Jiménez-Bremont JF, Flores J (2011) Are fungi important for breaking seed dormancy in desert species? Experimental evidence in Opuntia streptacantha (Cactaceae). Plant Biol 13:154–159

    Article  PubMed  Google Scholar 

  • Denef K, Bubenheim H, Lenhart K et al (2007) Community shifts and carbon translocation within metabolically-active rhizosphere microorganisms in grasslands under elevated CO2. Biogeosciences 4:769–779

    Article  CAS  Google Scholar 

  • Djonović S, Pozo MJ, Dangott LJ et al (2006) Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Mol Plant-Microbe Interact 19:838–853

    Article  PubMed  CAS  Google Scholar 

  • Djonović S, Vargas WA, Kolomiets MV et al (2007) A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize. Plant Physiol 145:875–889

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dolatabadi HK, Goltapeh EM, Jaimand K et al (2011) Effects of Piriformospora indica and Sebacina vermifera on growth and yield of essential oil in fennel (Foeniculum vulgare) under greenhouse conditions. J Basic Microbiol 51:33–39

    Article  CAS  PubMed  Google Scholar 

  • Dong S, Tian Z, Chen PJ et al (2013) The maturation zone is an important target of Piriformospora indica in Chinese cabbage roots. J Exp Bot 64:4529–4540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doni F, Anizan I, Che Radziah CMZ et al (2014a) Enhancement of rice seed germination and vigour by Trichoderma spp. Res J Appl Sci Eng Technol 7:4547–4552

    Google Scholar 

  • Doni F, Isahak A, Zain CRCM, Yusoff WMW (2014b) Physiological and growth response of rice plants (Oryza sativa L.) to Trichoderma spp. inoculants. AMB Express 4:45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dubrovsky JG, Sauer M, Napsucialy-Mendivil S (2008) Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proc Natl Acad Sci U S A 105:8790–8794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duijff BJ, Pouhair D, Olivain C, Alabouvette C, Lemanceau P (1998) Implication of systemic induced resistance in the suppression of Fusarium wilt of tomato by Pseudomonas fluorescens WCS417r and by nonpathogenic Fusarium oxysporum Fo47. Eur J Plant Pathol 104:903–910.

    Google Scholar 

  • Edwards MG, Poppy GM (2009) Environmental benefit of genetically modified crops. In: Ferry N, Gatehouse AMR (eds) Environmental impact of genetically modified crops. CAB International, Cambridge, MA, pp 23–41

    Chapter  Google Scholar 

  • Elad Y, Chet I, Henis Y (2006) Biological control of Rhizoctonia solani in strawberry fields by Trichoderma harzianum. Plant Soil 60:245–254

    Article  Google Scholar 

  • Elsharkawy MM, Shimizu M, Takahashi H, Hyakumachi M (2012) Induction of systemic resistance against Cucumber mosaic virus by Penicillium simplicissimum GP17–2 in Arabidopsis and tobacco. Plant Pathol 61:964–976

    Article  CAS  Google Scholar 

  • Elsharkawy MM, Shimizu M, Takahashi H et al (2013) Induction of systemic resistance against Cucumber mosaic virus in Arabidopsis thaliana by Trichoderma asperellum SKT-1. Plant Pathol J 29:193–200

    Article  PubMed  PubMed Central  Google Scholar 

  • Elsharkawy MM, Hassan N, Ali M et al (2014) Effect of zoysiagrass rhizosphere fungal isolates on disease suppression and growth promotion of rice seedlings. Acta Agric Scand Sect B Soil Plant Sci 64:135–140

    Google Scholar 

  • Elsharkawy MM, Shivanna MB, Meera MS, Hyakumachi M (2015) Mechanism of induced systemic resistance against anthracnose disease in cucumber by plant growth-promoting fungi. Acta Agric Scand Sect B Soil Plant Sci 65(4):287–299

    CAS  Google Scholar 

  • Felten J, Kohler A, Morin E et al (2009) The ectomycorrhizal fungus Laccaria bicolor stimulates lateral root formation in poplar and Arabidopsis through auxin transport and signaling. Plant Physiol 151:1991–2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontenelle ADB, Guzzo SD, Lucon CMM, Harakaya R (2011) Growth promotion and induction of resistance in tomato plant against Xanthomonas euvesicatoria and Alternaria solani by Trichoderma spp. Crop Prot 30:1492–1500

    Article  Google Scholar 

  • Forrest J, Miller-Rushing JA (2010) Toward a synthetic understanding of the role of phenology in ecology and evolution. Philos Trans R Soc B 365:3101–3112

    Article  Google Scholar 

  • Gaderer R, Lamdan NL, Frischmann A et al (2015) Sm2, a paralog of the Trichoderma cerato-platanin elicitor Sm1, is also highly important for plant protection conferred by the fungal-root interaction of Trichoderma with maize. BMC Microbiol 15:2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gahan J, Schmalenberger A (2014) The role of bacteria and mycorrhiza in plant sulfur supply. Front Plant Sci 5:723

    Article  PubMed  PubMed Central  Google Scholar 

  • Garnica-Vergara A, Barrera-Ortiz S, Muñoz-Parra E et al (2016) The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ETHYLENE INSENSITIVE 2 functioning. New Phytol 209:1496–1512

    Article  CAS  PubMed  Google Scholar 

  • Ghassemian M, Nambara E, Cutler S et al (2000) Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell 12:1117–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez AJ, Campo S, Rufat M et al (2007) Sucrose mediated priming of plant defense responses and broad-spectrum disease resistance by over-expression of the maize pathogenesis-related PRms proteins in rice plants. Mol Plant-Microbe Interact 20:832–842

    Article  CAS  Google Scholar 

  • Gopalakrishnan S, Srinivas V, Alekhya G, Prakash B (2015) Effect of plant growth-promoting Streptomyces sp. on growth promotion and grain yield in chickpea (Cicer arietinum L). 3 Biotech 5:799–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gosal SK, Karlupia A, Gosal SS et al (2010) Biotization with Piriformospora indica and Pseudomonas fluorescens improves survival rate, nutrient acquisition, field performance and saponin content of micropropagated Chlorophytum sp. Indian J Biotechnol 9:289–297

    CAS  Google Scholar 

  • Gotlieb D, Oka Y, Ben-Daniel B, Cohen Y (2003) Dry mycelium of Penicillium chrysogenum protects cucumber and tomato plants against the root-knot nematode Meloidogyne javanica. Phytoparasitica 31:217–225

    Article  Google Scholar 

  • Gujar PD, Bhavsar KP, Khire JM (2013) Effect of phytase from Aspergillus niger on plant growth and mineral assimilation in wheat (Triticum aestivum Linn.) and its potential for use as a soil amendment. J Sci Food Agric 93:2242–2247

    Article  CAS  PubMed  Google Scholar 

  • Guler NS, Pehlivan N, Karaoglu SA et al (2016) Trichoderma atroviride ID20G inoculation ameliorates drought stress-induced damages by improving antioxidant defence in maize seedlings. Acta Physiol Plant 38:132

    Article  CAS  Google Scholar 

  • Gupta R, Chakrabarty SK (2013) Gibberellic acid in plant still a mystery unresolved. Plant Signal Behav 8:e25504

    Article  PubMed  PubMed Central  Google Scholar 

  • Hajipoor AB, Sohani MM, Hassani SH et al (2015) Symbiotic effect of endophytic fungus Piriformospora indica with rice (Oryza sativa) on resistance against Bakanae disease. Cereal Res 5:219–230

    Google Scholar 

  • Hamayun M, Khan SA, Ahmad N et al (2009a) Cladosporium sphaerospermum as a new plant growth-promoting endophyte from the roots of Glycine max (L.) Merr. World J Microbiol Biotechnol 25:627–632

    Article  CAS  Google Scholar 

  • Hamayun M, Khan SA, Khan MA et al (2009b) Gibberellin production by pure cultures of a new strain of Aspergillus fumigates. World J Microbiol Biotechnol 25:1785–1792

    Article  CAS  Google Scholar 

  • Hamayun M, Khan SA, Khan AL et al (2010) Growth promotion of cucumber by pure cultures of gibberellin-producing Phoma sp. GAH7. World J Microbiol Biotechnol 26:889–894

    Article  CAS  Google Scholar 

  • Haque M, Ilias GNM, Molla AH (2012) Impact of Trichoderma-enriched bio-fertilizer on the growth and yield of mustard (Brassica rapa L.) and Tomato (Solanum lycopersicon Mill.) Agriculturists 10:109–119

    Article  Google Scholar 

  • Harman GE (2006) Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96:190–194

    Article  CAS  PubMed  Google Scholar 

  • Harman GE, Howell CR, Viterbo A et al (2004) Trichoderma species-opportunistic avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • Harrach BD, Baltruschat H, Barna B et al (2013) The mutualistic fungus Piriformospora indica protects barley roots from a loss of antioxidant capacity caused by the necrotrophic pathogen Fusarium culmorum. Mol Plant-Microbe Interact 26:599–605

    Article  CAS  PubMed  Google Scholar 

  • Harrison MJ (2005) Signaling in the AM symbiosis. Annu Rev Microbiol 59:19–42

    Article  CAS  PubMed  Google Scholar 

  • Hase S, Takahashi S, Takenaka S et al (2008) Involvement of jasmonic acid signalling in bacterial wilt disease resistance induced by biocontrol agent Pythium oligandrum in tomato. Plant Pathol 57:870–876

    Article  CAS  Google Scholar 

  • Hilbert M, Voll LM, Ding Y et al (2012) Indole derivative production by the root endophyte Piriformospora indica is not required for growth promotion but for biotrophic colonization of barley roots. New Phytol 196:520–534

    Article  CAS  PubMed  Google Scholar 

  • Hoitink HAJ, Maden LV, Dorrance AE (2006) Systemic resistance induced by Trichoderma spp.: interactions between the host, the pathogen, the biocontrol agent, and soil organic matter quality. Phytopathology 96:189–196

    Article  Google Scholar 

  • Horinouchi H, Muslim A, Hyakumachi M (2010) Biocontrol of Fusarium wilt of spinach by the plant growth promoting fungus Fusarium equiseti GF183. J Plant Pathol 92:249–254

    Google Scholar 

  • Hossain MM, Sultana F (2015) Genetic variation for induced and basal resistance against leaf pathogen Pseudomonas syringae pv. tomato DC3000 among Arabidopsis thaliana accessions. Springer Plus 4:296

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hossain MM, Sultana F, Kubota M et al (2007) The plant growth-promoting fungus Penicillium simplicissimum GP17-2 induces resistance in Arabidopsis thaliana by activation of multiple defense signals. Plant Cell Physiol 48:1724–1736

    Article  CAS  PubMed  Google Scholar 

  • Hossain MM, Sultana F, Kubota M, Hyakumachi M (2008a) Differential inducible defense mechanisms against bacterial speck pathogen in Arabidopsis thaliana by plant-growth-promoting-fungus Penicillium sp. GP16-2 and its cell free filtrate. Plant Soil 304:227–239

    Article  CAS  Google Scholar 

  • Hossain MM, Sultana F, Kubota M, Koyama H, Hyakumachi M (2008b) Systemic resistance to bacterial leaf speck pathogen in Arabidopsis thaliana induced by the culture filtrate of a plant growth promoting fungus (PGPF) Phoma sp. GS8-1. J Gen Plant Pathol 74:213–221

    Article  CAS  Google Scholar 

  • Hossain MM, Hossain N, Sultana F et al (2013) Integrated management of Fusarium wilt of chickpea (Cicer arietinum L.) caused by Fusarium oxysporum f.sp. ciceris with microbial antagonist, botanical extract and fungicide. Afr J Biotechnol 12:4699–4706

    Article  Google Scholar 

  • Hossain MM, Sultana F, Miyazawa M, Hyakumachi M (2014) The plant growth promoting fungi Penicillium spp. GP15-1 enhances growth and confers protection against damping-off and anthracnose in the cucumber. J Oleo Sci 63(4):391–400

    Article  CAS  PubMed  Google Scholar 

  • Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87:4–10

    Article  Google Scholar 

  • Howell CR, Hanson LE, Stipanovic SD, Puckhaber LS (2000) Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathology 90:248–252

    Article  CAS  PubMed  Google Scholar 

  • Hung R, Lee S, Bennett JW (2013) Arabidopsis thaliana as a model system for testing the effect of Trichoderma volatile organic compounds. Fungal Ecol 6:19–26

    Article  Google Scholar 

  • Hung R, Lee S, Rodriguez-Saona C et al (2014) Common gas phase molecules from fungi affect seed germination and plant health in Arabidopsis thaliana. AMB Express 4:5

    Article  CAS  Google Scholar 

  • Hyakumachi M (1994) Plant-growth-promoting fungi from turfgrass rhizosphere with potential for disease suppression. Soil Microorgan 44:53–68

    Google Scholar 

  • Hyakumachi M (1997) Induced systemic resistance against anthracnose in cucumber due to plant growth-promoting fungi and studies on mechanisms. In: Proceedings of Fourth International Workshop on Plant Growth-Promoting Rhizobacteria, Japan–OECD Joint Workshop, Sapporo: pp 164–169

    Google Scholar 

  • Ignatova LV, Brazhnikova YV, Berzhanova RZ, Mukasheva TD (2015) Plant growth-promoting and antifungal activity of yeasts from dark chestnut soil. Microbiol Res 175:78–83

    Article  CAS  PubMed  Google Scholar 

  • Ishimoto H, Fukushi Y, Tahara S (2004) Non-pathogenic Fusarium species protect the seedlings of Lepidium sativum from Pythium ultimum. Soil Biol Biochem 36:409–414

    Article  CAS  Google Scholar 

  • Islam S, Akanda AM, Sultana F, Hossain MM (2014a) Chilli rhizosphere fungus Aspergillus spp. PPA1 promotes vegetative growth of cucumber (Cucumis sativus) plants upon root colonisation. Arch Phytopathol Plant Protect 47:1231–1238

    Article  Google Scholar 

  • Islam S, Akanda AM, Prova A, Sultana F, Hossain MM (2014b) Growth promotion effect of Fusarium spp. PPF1 from Bermuda grass (Cynodon dactylon) rhizosphere on Indian spinach (Basella alba) seedlings are linked to root colonization. Arch Phytopathol Plant Protect 47:2319–2331

    Article  Google Scholar 

  • Jensen B, Knudsen IMB, Madsen M, Jensen DF (2004) Biopriming of infected carrot seed with an antagonist, Clonostachys rosea, selected for control of seedborne Alternaria spp. Phytopathology 94:551–560

    Article  PubMed  Google Scholar 

  • Jogaiah S, Abdelrahman M, Tran LSP, Shin-ichi I (2013) Characterization of rhizosphere fungi that mediate resistance in tomato against bacterial wilt disease. J Exp Bot 64:3829–3842

    Article  CAS  PubMed  Google Scholar 

  • John RP, Tyagi RD, Prevost D et al (2010) Mycoparasitic Trichoderma viride as a biocontrol agent against Fusarium oxysporum f. sp. adzuki and Pythium arrhenomanes and as a growth promoter of soybean. Crop Prot 29:1452–1459

    Article  Google Scholar 

  • Joshi-Saha A, Valon C, Leung J (2011) Abscisic acid signal off the starting block. Mol Plant 4:562–580

    Article  CAS  PubMed  Google Scholar 

  • Kai M, Piechulla B (2009) Plant growth promotion due to rhizobacterial volatiles – an effect of CO2? FEBS Lett 583:3473–3477

    Article  CAS  PubMed  Google Scholar 

  • Kang JW, Lee NY, Cho KC et al (2015) Analysis of nitrated proteins in Saccharomyces cerevisiae involved in mating signal transduction. Proteomics 15(2–3):580–590

    Article  CAS  PubMed  Google Scholar 

  • Kaveh H, Jartoodeh SV, Aruee H, Mazhabi M (2011) Would Trichoderma affect seed germination and seedling quality of two muskmelon cultivars, khatooni and qasri and increase their transplanting success? J Biol Environ Sci 5:169–175

    Google Scholar 

  • Khalmuratova I, Kim H, Nam YJ (2015) Diversity and plant growth promoting capacity of endophytic fungi associated with halophytic plants from the west coast of Korea. Mycobiology 43:373–383

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan AL, Lee IJ (2013) Endophytic Penicillium funiculosum LHL06 secretes gibberellin that reprograms Glycine max L. growth during copper stress. BMC Plant Biol 13:86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan SA, Hamayun M, Yoon H et al (2008) Plant growth promotion and Penicillium citrinum. BMC Microbiol 8:231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khan AL, Hamayun M, Ahmad N et al (2011a) Exophiala sp. LHL08 reprograms Cucumis sativus to higher growth under abiotic stresses. Physiol Plant 143:329–343

    Article  CAS  PubMed  Google Scholar 

  • Khan AL, Hamayun M, Kim YH et al (2011b) Gibberellins producing endophytic Aspergillus fumigatus sp. LH02 influenced endogenous phytohormonal levels, plant growth and isoflavone biosynthesis in soybean under salt stress. Process Biochem 46:440–447

    Article  CAS  Google Scholar 

  • Khan AL, Shinwari ZK, Kim YH et al (2012) Role of endophyte Chaetomium globosum LK4 in growth of Capsicum annum by production of gibberellins and indole acetic acid. Pak J Bot 44:1601–1607

    Google Scholar 

  • Khan AL, Waqas M, Hamayun M et al (2013) Co-synergism of endophyte Penicillium resedanum LK6 with salicylic acid helped Capsicum annuum in biomass recovery and osmotic stress mitigation. BMC Microbiol 13:1–13

    Article  CAS  Google Scholar 

  • Khan AL, Waqas M, Lee IJ (2015) Resilience of Penicillium resedanum LK6 and exogenous gibberellin in improving Capsicum annuum growth under abiotic stresses. J Plant Res 128:259–268

    Google Scholar 

  • Khan AL, Al-Harrasi A, Al-Rawahi A et al (2016) Endophytic fungi from frankincense tree Improves host growth and produces extracellular enzymes and indole acetic acid. PLoS One 11:e0158207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khatabi B, Molitor A, Lindermayr C et al (2012) Ethylene supports colonization of plant roots by the mutualistic fungus Piriformospora indica. PLoS One 7:e35502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koike N, Hyakumachi M, Kageyama K et al (2001) Induction of systemic resistance in cucumber against several diseases by plant growth-promoting fungi: lignification and superoxide generation. Eur J Plant Pathol 107:523–533

    Article  CAS  Google Scholar 

  • Kojima H, Hossain MM, Kubota M, Hyakumachi M (2013) Involvement of the salicylic acid signaling pathway in the systemic resistance induced in Arabidopsis by plant growth-promoting fungus Fusarium equiseti GF19-1. J Oleo Sci 62:415–426

    Article  CAS  PubMed  Google Scholar 

  • Korolev N, Rav David D, Elad Y (2008) The role of phytohormones in basal resistance and Trichoderma-induced systemic resistance to Botrytis cinerea in Arabidopsis thaliana. BioControl 53:667–683. https://doi.org/10.1007/s10526-007-9103-3

    Article  CAS  Google Scholar 

  • Korpi A, Jarnberg J, Pasanen AL (2009) Microbial volatile organic compounds. Crit Rev Toxicol 39:139–193

    Article  CAS  PubMed  Google Scholar 

  • Korves T, Bergelson J (2003) A developmental response to pathogen infection in Arabidopsis. Plant Physiol 133:339–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kushwah S, Laxmi A (2014) The interaction between glucose and cytokinin signal transduction pathway in Arabidopsis thaliana. Plant Cell Environ 37:235–253

    Article  CAS  PubMed  Google Scholar 

  • Lakshmanan V, Selvaraj G, Bais HP (2014) Functional soil microbiome: belowground solutions to an aboveground problem. Plant Physiol 166:689–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamba P, Sharma S, Munshi GD, Munshi SK (2008) Biochemical changes in sunflower plants due to seed treatment/spray application with biocontrol agents. Phytoparasitica 36:388

    Article  CAS  Google Scholar 

  • Larkin RP, Fravel DR (1999) Field efficiency of selected non-pathogenic Fusarium spp. and other biocontrol agents for the control of Fusarium wilt of tomato, 1997–1998. Biol Cult Tests 14:116

    Google Scholar 

  • Lee YC, Johnson JM, Chien CT et al (2011) Growth promotion of Chinese cabbage and Arabidopsis by Piriformospora indica is not stimulated by mycelium-synthesized auxin. Mol Plant-Microbe Interact 24:421–431

    Article  CAS  PubMed  Google Scholar 

  • Lee SM, Chung J, Ryu C-M (2015) Augmenting plant immune responses and biological control by microbial determinants. Res Plant Dis 21:161–179

    Article  Google Scholar 

  • Lee S, Yap M, Behringer G et al (2016) Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal Biol Biotechnol 3:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Lemfack MC, Nicke J, Dunkel M et al (2014) mVOC: a database of microbial volatiles. Nucleic Acids Res 42:D744–D748

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Wang J (2006) A forskolin derivative, FSK88, induces apoptosis in human gastric cancer BGC823 cells through caspase activation involving regulation of Bcl-2 family gene expression, dissipation of mitochondrial membrane potential and cytochrome c release. Cell Biol Int 30:940–946

    Article  CAS  PubMed  Google Scholar 

  • Limtong S, Koowadjanakul N (2012) Yeasts from phylloplane and their capability to produce indole-3-acetic acid. World J Microbiol Biotechnol 28:3323–3335

    Article  CAS  PubMed  Google Scholar 

  • Lloret PG, Casero PJ (2002) Lateral root initiation. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots – the hidden half. Marcel Dekker, New York, pp 127–155

    Chapter  Google Scholar 

  • Lohar DP, Schaff JE, Laskey JG et al (2004) Cytokinins play opposite roles in lateral root formation, and nematode and rhizobial symbioses. Plant J 38:203–214

    Article  CAS  PubMed  Google Scholar 

  • Lukhoba CW, Simmonds MS, Paton AJ (2006) Plectranthus: a review of ethnobotanical uses. J Ethnopharmacol 103:1–24

    Article  PubMed  Google Scholar 

  • Maciá-Vicente JG, Jansson HB, Talbot NJ, Lopez-Llorca LV (2009) Real-time PCR quantification and live-cell imaging of endophytic colonization of barley (Hordeum vulgare) roots by Fusarium equiseti and Pochonia chlamydosporia. New Phytol 182:213–228

    Article  PubMed  Google Scholar 

  • Madi L, Katan J (1998) Penicillium janczewskii and its metabolites, applied to leaves, elicit systemic acquired resistance to stem rot caused by Rhizoctonia solani. Physiol Mol Plant Pathol 53:163–175

    Article  CAS  Google Scholar 

  • Malinowsky DP, Brauer DK, Belesky DP (1999) Neotyphodium coenophialum-endophyte affects root morphology of tall fescue grown under phosphorous deficiency. J Agron Crop Sci 183:53–60

    Article  Google Scholar 

  • Marina S, Angel M, Silva-Flores MA (2011) The plant growth-promoting fungus Aspergillus ustus promotes growth and induces resistance against different lifestyle pathogens in Arabidopsis thaliana. J Microbiol Biotechnol 21:686–696

    Article  Google Scholar 

  • Martínez-Medina A, Pascual JA, Pérez-Alfocea F et al (2010) Trichoderma harzianum and Glomus intraradices modify the hormone disruption induced by Fusarium oxysporum infection in melon plants. Phytopathology 100:682–688

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Medina A, Fernández I, Sánchez-Guzmán MJ et al (2013) Deciphering the hormonal signaling network behind the systemic resistance induced by Trichoderma harzianum in tomato. Frot. Plant Sci 4:206

    Google Scholar 

  • Martínez-Medina A, Del Mar Alguacil M, Pascual JA, Van Wees SCM (2014) Phytohormone profiles induced by Trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants. J Chem Ecol 40:804–815

    Article  PubMed  CAS  Google Scholar 

  • Martín-Luengo MA, Yates M, Martínez MJD et al (2008) Synthesis of p-cymene from limonene, a renewable feedstock. Appl Catal B Environ 81:218–224

    Article  CAS  Google Scholar 

  • Mastouri F, Björkman T, Harman GE (2010) Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology 100:1213–1221

    Article  PubMed  CAS  Google Scholar 

  • Mathys J, De Cremer K, Timmermans P et al (2012) Genome-wide characterization of ISR induced in Arabidopsis thaliana by Trichoderma hamatum T382 against botrytis cinerea infection. Front Plant Sci 3:10

    Article  Google Scholar 

  • Mehrotra VS (2005) Mycorrhiza: role and applications. Allied Publishers, New Delhi

    Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    Article  CAS  PubMed  Google Scholar 

  • Minerdi D, Bossi S, Maffei ME, Gullino ML, Garibaldi A (2011) Fusarium oxysporum and its bacterial consortium promote lettuce growth and expansin A5 gene expression through microbial volatile organic compound (MVOC) emission. FEMS Microbiol Ecol 76:342–351

    Article  CAS  PubMed  Google Scholar 

  • Ming Q, Su C, Zheng C et al (2013) Elicitors from the endophytic fungus Trichoderma atroviride promote Salvia miltiorrhiza hairy root growth and tanshinone biosynthesis. J Exp Bot 64:5687–5694

    Article  CAS  PubMed  Google Scholar 

  • Morán-Diez E, Rubio B, Domïnguez S et al (2012) Transcriptomic response of Arabidopsis thaliana after 24h incubation with the biocontrol fungus Trichoderma harzianum. J Plant Physiol 169:614–620

    Article  PubMed  CAS  Google Scholar 

  • Morpeth DR, Hall AM (2000) Microbial enhancement of seed germination in Rosa corymbifera ‘Laxa’. Seed Sci Res 10:489–494

    Article  Google Scholar 

  • Mousavi SH, Zad VB, Sharifnabi B et al (2014) Induction of blast disease resistance in rice plants endophyte fungus Piriformospora indica. Iranian J Plant Pathol 50:127–129

    Google Scholar 

  • Mukherjee T, Ivanova M, Dagda M et al (2015) Constitutively over-expressing a tomato fructokinase gene (LeFRK1) in cotton, Gossypium hirsutum L. (c.v. Coker 312) positively affect plant vegetative growth, boll number, and seed cotton yield. Funct Plant Biol 42:899–908

    Article  CAS  Google Scholar 

  • Müller D, Leyser O (2011) Auxin, cytokinin and the control of shoot branching. Ann Bot 107:1203–1212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murali M, Sudisha J, Amruthesh KN et al (2013) Rhizosphere fungus Penicillium chrysogenum promotes growth and induces defence-related genes and downy mildew disease resistance in pearl millet. Plant Biol 15:111–118

    Article  CAS  PubMed  Google Scholar 

  • Mushtaq S, Nasim G, Khokhar I, Mukhtar I (2012) Effects of Penicillium extracts on germination vigour in subsequent seedling growth of tomato (Solanum lycopersicum L.) Arch Phytopathol Plant Protect 45:932–937

    Article  CAS  Google Scholar 

  • Muslim A, Horinouchi H, Hyakumachi M (2003) Biological control of Fusarium wilt of tomato with hypovirulent binucleate Rhizoctonia in greenhouse conditions. Mycoscience 44:77–84

    Article  Google Scholar 

  • Mwajita MR, Murage H, Tani A, Kahangi EM (2013) Evaluation of rhizosphere, rhizoplane and phyllosphere bacteria and fungi isolated from rice in Kenya for plant growth promoters. Springer Plus 2:606

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nagaraju A, Murali M, Sudisha J et al (2012) Beneficial microbes promote plant growth and induce systemic resistance in sunflower against downy mildew disease caused by Plasmopara halstedii. Curr Bot 3:12–18

    Google Scholar 

  • Nassimi Z, Taheri P (2017) Endophytic fungus Piriformospora indica induced systemic resistance against rice sheath blight via affecting hydrogen peroxide and antioxidants. Biocontrol Sci Tech. https://doi.org/10.1080/09583157.2016.1277690

  • Nayaka CS, Niranjana SR, Shankar UAC et al (2010) Seed biopriming with novel strain of Trichoderma harzianum for the control of toxigenic Fusarium verticillioides and fumonisins in maize. Arch Phytopathol Plant Protect 43:264–282

    Article  Google Scholar 

  • Naznin HA, Kimura M, Miyazawa M, Hyakumachi M (2013) Analysis of volatile organic compounds emitted by plant growth-promoting fungus Phoma sp. GS8-3 for growth promotion effects on tobacco. Microbes Environ 28:42–49

    Article  PubMed  Google Scholar 

  • Naznin HA, Kiyohara D, Kimura M et al (2014) Systemic resistance induced by volatile organic compounds emitted by plant growth promoting fungi in Arabidopsis thaliana. PLoS One 9:e86882. https://doi.org/10.1371/journal.pone.0086882

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Niemi K, Vuorinen T, Ernstsen A, Haggman H (2002) Ectomycorrhizal fungi and exogenous auxins influence root and mycorrhiza formation of Scots pine hypocotyl cuttings in vitro. Tree Physiol 22:1231–1239

    Article  CAS  PubMed  Google Scholar 

  • Niu DD, Liu HX, Jiang CH (2011) The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate-and jasmonate/ethylene-dependent signaling pathways. Mol Plant-Microbe Interact 24:533–542

    Article  CAS  PubMed  Google Scholar 

  • Nunes-Nesi A, Carrari F, Lytovchenko A et al (2005) Enhanced photosynthetic performance and growth as a consequence of decreasing mitochondrial malate dehydrogenase activity in transgenic tomato plants. Plant Physiol 137:611–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Odanaka S, Bennett AB, Kanayama Y (2002) Distinct physiological roles of fructokinase isozymes revealed by gene-specific suppression of frk1 and frk2 expression in tomato. Plant Physiol 129:1119–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144(1):31–43

    Article  Google Scholar 

  • Ogawa K, Komada H (1986) Induction of systemic resistance against Fusarium wilt of sweet potato by non-pathogenic Fusarium oxysporum. Ann Phytopathol Soc Jpn 52:15–21

    Article  Google Scholar 

  • Olvera-Carrillo Y, Márquez-Guzmán J, Sánchez-Coronado ME (2009) Effect of burial on the germination of Opuntia tomentosa’s (Cactaceae, Opuntioideae) seeds. J Arid Environ 73(4–5):421–427

    Article  Google Scholar 

  • Orman-Ligeza B, Parizot B, Gantet PP et al (2013) Post-embryonic root organogenesis in cereals: branching out from model plants. Trends Plant Sci 18:459–467

    Article  CAS  PubMed  Google Scholar 

  • Otsuka K, Larson D (eds) (2013) An African green revolution: finding ways to boost productivity on small farms. Springer, Dordrecht

    Google Scholar 

  • Ousley MA, Lynch JM, Whipps JM (1994) The effects of addition of Trichoderma inocula on flowering and shoot growth of bedding plants. Sci Hortic 59:147–155

    Article  Google Scholar 

  • Pages L (1992) Mini-rhizotrons transparents pour l’etude du systeme recinaire de jeunes plantes. Application a la characterisation du developpement racinaire de jeunes chenes (Quercus robur L.) Can J Bot 70:1840–1847

    Article  Google Scholar 

  • Patil BS, Ravikumar RL, Bhat JS, Soregaon D (2014) Molecular mapping of QTLs for resistance to early and late Fusarium wilt in chickpea. Czech J Genet Plant Breed 50:171–176

    CAS  Google Scholar 

  • Per TS, Khan S, Asgher M, Bano B, Khan NA (2016) Photosynthetic and growth responses of two mustard cultivars differing in phytocystatin activity under cadmium stress. Photosynthetica 54:491–501

    Article  CAS  Google Scholar 

  • Perazzolli M, Raoatti B, Bozza E, Pertot I (2011) Trichoderma harzianum T39 induces resistance against downy mildew by priming for defence without costs for grapevine. Biol Control 58:74–82

    Article  Google Scholar 

  • Perazzolli M, Moretto M, Fontana P, Ferrarini A, Velasco R, Moser C, Delledonne M, Pertot I (2012) Downy mildew resistance induced by Trichoderma harzianum T39 in susceptible grapevines partially mimics transcriptional changes of resistant genotypes. BMC Genomics 13:660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira E, Kolotilin I, Conley A, Menassa R (2014) Production and characterization of in planta transiently produced polygalacturanase from Aspergillus niger and its fusions with hydrophobin or ELP tags. BMC Biotechnol 14:59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perner H, Schwarz D, Bruns C et al (2007) Effect of arbuscular mycorrhizal colonization and two levels of compost supply on nutrient uptake and flowering of pelargonium plants. Mycorrhiza 17:469–474

    Article  PubMed  Google Scholar 

  • Peskan-Berghofer T, Shahollari B, Giong PH et al (2004) Association of Piriformospora indica with Arabidopsis thaliana roots represents a novel system to study beneficial plant–microbe interactions and involves early plant protein modifications in the endoplasmic reticulum and at the plasma membrane. Physiol Plant 122:465–477

    Article  CAS  Google Scholar 

  • Peters RD, Grau CR (2002) Inoculation with nonpathogenic Fusarium solani increases severity of pea root rot caused by Aphanomyces euteiches. Plant Dis 86:411–414

    Article  Google Scholar 

  • Pieterse CMJ, van Wees SCM, Hoffland E et al (1996) Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8:1225–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse CMJ, Leon-Reyes A, van der Ent S, van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CM, Zamioudis C, Berendsen RL et al (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375

    Article  CAS  PubMed  Google Scholar 

  • Poulton JL, Bryla D, Koide RT, Stephenson AG (2002) Mycorrhizal infection and high soil phosphorus improve vegetative growth and the female and male functions in tomato. New Phytol 154:255–264

    Article  CAS  Google Scholar 

  • Prasad A, Mathur A, Singh M et al (2012) Growth and asiaticoside production in multiple shoot cultures of a medicinal herb Centella asiatica L. under the influence of nutrient manipulations. J Nat Med 66:383–387

    Article  CAS  PubMed  Google Scholar 

  • Quintanilla P (2002) Biological control in potato and tomato to enhance resistance to plant pathogens-especially against Phytophthora infestans in potato. Acta Universitatis Agriculturae Sueciae, Agraria 315, SLU, Uppsala, doctoral thesis

    Google Scholar 

  • Rabiey M, Shaw MW (2016) Piriformospora indica reduces Fusarium head blight disease severity and mycotoxin DON contamination in wheat under UK weather conditions. Plant Pathol 65:940–952

    Article  CAS  Google Scholar 

  • Radhakrishnan R, Kang S, Baek I, Lee I (2014) Characterization of plant growth-promoting traits of Penicillium species against the effects of high soil salinity and root disease. J Plant Interact 9:754–762

    Article  CAS  Google Scholar 

  • Rahman M, Ali J, Masood M (2015) Seed priming and Trichoderma application: a method for improving seedling establishment and yield of dry direct seeded boro (winter) rice in Bangladesh. Universal J Agric Res 3:59–67

    Google Scholar 

  • Rai MK, Varma A, Pandey AK (2004) Antifungal potential of Spilanthes calva after inoculation of Piriformospora indica. Mycoses 47:479–481

    Article  CAS  PubMed  Google Scholar 

  • Ren AZ, Yu-Bao G, Jin Z, Jing Z (2006) Effect of endophyte infection on salt resistance of ryegrass. Ecol Sin 26:1750–1757

    CAS  Google Scholar 

  • Reuveni M, Reuveni R (2000) Prior inoculation with non-pathogenic fungi induces systemic resistance to powdery mildew on cucumber plants. Eur J Plant Pathol 106:633–638

    Article  Google Scholar 

  • Riefler M, Novak O, Strnad M, Schmülling T (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18:40–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    Article  CAS  PubMed  Google Scholar 

  • Rozpądek P, Wężowicz K, Nosek M et al (2015) The fungal endophyte Epichloë typhina improves photosynthesis efficiency of its host orchard grass (Dactylis glomerata). Planta 242:1025–1035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ryu C-M, Farag MA, C-H H et al (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A 100:4927–4932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu CM, Farag MA, CH H (2004) Bacterial volatiles trigger induced systemic resistance in Arabidopsis thaliana. J Plant Physiol 134:1017–1026

    Article  CAS  Google Scholar 

  • Saksirirat W, Chareerak P, Bunyatrachata W (2009) Induced systemic resistance of biocontrol fungus, Trichoderma spp. against bacterial and gray leaf spot in tomatoes. Asian J Food Agro-Industry 2:S99–S104

    Google Scholar 

  • Salas-Marina MA, Silva-Flores MA, Cervantes-Badillo MG et al (2011) The plant growth-promoting fungus Aspergillus ustus promotes growth and induces resistance against different lifestyle pathogens in Arabidopsis thaliana. J Microbiol Biotechnol 21:686–696

    Article  PubMed  Google Scholar 

  • Saldajeno MGB, Hyakumachi M (2011) The plant growth-promoting fungus Fusarium equiseti and the arbuscular mycorrhizal fungus Glomus mosseae stimulate plant growth and reduce severity of anthracnose and damping-off diseases in cucumber (Cucumis sativus) seedlings. Ann Appl Biol 159:28–40

    Article  Google Scholar 

  • Sánchez-López AM, Bahaji A, De Diego N et al (2016) Arabidopsis responds to Alternaria alternata volatiles by triggering plastid phosphoglucose isomerase-independent mechanisms. Plant Physiol 172:989–2001

    Article  CAS  Google Scholar 

  • Sasan RK, Bidochka MJ (2012) The insect-pathogenic fungus Metarhizium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. Am J Bot 99:101–107

    Article  PubMed  Google Scholar 

  • Satheesan J, Narayanan AK, Sakunthala M (2012) Induction of root colonization by Piriformospora indica leads to enhanced asiaticoside production in Centella asiatica. Mycorrhiza 22:195–202

    Article  CAS  PubMed  Google Scholar 

  • Schäfer P, Pfiffi S, Voll LM et al (2009) Manipulation of plant innate immunity and gibberellin as factor of compatibility in the mutualistic association of barley roots with Piriformospora indica. Plant J 59:461–474

    Article  PubMed  CAS  Google Scholar 

  • Scheres B, Benfey P, Dolan L (2002) Root development. The Arabidopsis Book. Am Soc Plant Biologists. https://doi.org/10.1199/tab.0101

  • Segarra G, Van der Ent S, Trillas I, Pieterse CMJ (2009) MYB72, a node of convergence in induced systemic resistance triggered by a fungal and a bacterial beneficial microbe. Plant Biol:1190–1196

    Google Scholar 

  • Sharma G, Agrawal V (2013) Marked enhancement in the artemisinin content and biomass productivity in Artemisia annua L. shoots co-cultivated with Piriformospora indica. World J Microbiol Biotechnol 29:1133–1138

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Kharkwal AC, Abdin MZ, Varma A (2016) Piriformospora indica-mediated salinity tolerance in Aloe vera plantlets. Symbiosis. https://doi.org/10.1007/s13199-016-0449-0

  • Sharon M, Freeman S, Sneh B (2011) Assessment of resistance pathways induced in Arabidopsis thaliana by hypovirulent Rhizoctonia spp. isolates. Phytopathology 101:828–838

    Article  CAS  PubMed  Google Scholar 

  • Shaw O, Cocq KL, Paszkiewicz K et al (2016) Transcriptional reprogramming underpins enhanced plant growth promotion by the biocontrol fungus Trichoderma hamatum GD12 during antagonistic interactions with Sclerotinia sclerotiorum in soil. Mol Plant Pathol 17:1425–1441

    Article  CAS  PubMed  Google Scholar 

  • Shi T, Gao Z, Wang L et al (2012) Identification of differentially-expressed genes associated with pistil abortion in Japanese apricot by genome-wide transcriptional analysis. PLoS One 7:e47810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu K, Hossain MM, Kato K et al (2013) Induction of defense responses in cucumber plants by using the cell-free filtrate of the plant growth-promoting fungus Penicillium simplicissimum GP17-2. J Oleo Sci 62:613–621

    Article  CAS  PubMed  Google Scholar 

  • Shindo C, Bernasconi G, Hardtke CS (2007) Natural genetic variation in Arabidopsis: tools, traits and prospects for evolutionary ecology. Ann Bot 99:1043–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shivanna MB, Meera MS, Hyakumachi M (1994) Sterile fungi from zoysiagrass rhizosphere as plant growth promoters in spring wheat. Can J Microbial 40:637–644

    Article  Google Scholar 

  • Shivanna MB, Meera MS, Kubota M, Hyakumachi M (2005) Promotion of growth and yield in cucumber by zoysiagrass rhizosphere fungi. Microbes Environ 20:34–40

    Article  Google Scholar 

  • Shoresh M, Harman GE (2008) The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: a proteomic approach. Plant Physiol 147:2147–2163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shoresh M, Yedidia I, Chet I (2005) Involvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathology 95:76–84

    Article  CAS  PubMed  Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    Article  CAS  PubMed  Google Scholar 

  • Siddikee MA, Zereen MI, Li CF, Dai CC (2016) Endophytic fungus Phomopsis liquidambari and different doses of N-fertilizer alter microbial community structure and function in rhizosphere of rice. Sci Rep 6:32270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Kalra A, Paramaeswarn TN et al (2012) Effect of potential bioinoculants and organic manures on root-rot and wilt, growth, yield and quality of organically grown Coleus forskohlii in a semiarid tropical region of Bangalore (India). Plant Pathol 61:700–708

    Article  Google Scholar 

  • Sirrenberg A, Goebel C, Grond S et al (2007) Piriformospora indica affects plant growth by auxin production. Physiol Plant 131:581–589

    Article  CAS  PubMed  Google Scholar 

  • Soares WL, Firpo de Souza Porto M (2012) Pesticide use and economic impacts on health. Rev Saúde Pública 46:209–217

    Article  PubMed  Google Scholar 

  • Sofo A, Scopa A, Manfra M et al (2011) Trichoderma harzianum strain T-22 induces changes in phytohormone levels in cherry rootstocks (Prunus cerasus x P. canescens). Plant Growth Regul 65:421–425

    Article  CAS  Google Scholar 

  • Sofo A, Tataranni G, Xiloyannis C et al (2012) Direct effects of Trichoderma harzianum strain T-22 on micropropagated shoots of GiSeLa6® (Prunus cerasus X Prunus canescens) rootstock. Environ Exp Bot 76:33–38

    Article  CAS  Google Scholar 

  • Song J, Irwin J, Dean C (2013) Remembering the prolonged cold of winter. Curr Biol 23:R80–R811

    Article  CAS  Google Scholar 

  • Srivastava S, Singh V, Gupta PS et al (2006) Nested PCR assay for detection sugarcane grassy shoot phytoplasma in the leafhopper vector Deltocephalus vulgaris: a first report. Plant Pathol 55:25–28

    Article  CAS  Google Scholar 

  • Srivastava PK, Shenoy BD, Gupta M (2012) Stimulatory effects of arsenic-tolerant soil fungi on plant growth promotion and soil properties. Microbes Environ 27(4):477–482

    Article  PubMed  PubMed Central  Google Scholar 

  • Stein E, Molitor A, Kogel KH, Waller F (2008) Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires jasmonic acid signaling and the cytoplasmic function of NPR1. Plant Cell Physiol 49:1747–1751

    Article  CAS  PubMed  Google Scholar 

  • Sukumer P, Legué V, Vayssiéres A et al (2013) Involvement of auxin pathways in modulating root architecture during beneficial plant-microorganism interactions. Plant Cell Environ 36:909–919

    Article  CAS  Google Scholar 

  • Sultana F, Hossain MM, Kubota M, Hyakumachi M (2008) Elicitation of systemic resistance against the bacterial speck pathogen in Arabidopsis thaliana by culture filtrates of plant growth-promoting fungi. Can J Plant Pathol 30(2):196–205

    Article  Google Scholar 

  • Sultana S, Hossain MM, Kubota M, Hyakumachi M (2009) Induction of systemic resistance in Arabidopsis thaliana in response to a culture filtrate from a plant growth-promoting fungus, Phoma sp. GS8-3. Plant Biol 11:97–104

    Article  CAS  PubMed  Google Scholar 

  • Szopińska D, Jensen B, Knudsen IMB et al (2010) Non-chemical methods for controlling seedborne fungi in carrot with special reference to Alternaria radicina. J Plant Protec Res 50(2):184–192

    Article  Google Scholar 

  • Thines M, Kamoun S (2010) Oomycete-plant coevolution: recent advances and future prospects. Curr Opin Plant Biol 13:427–433

    Article  PubMed  Google Scholar 

  • Thuerig B, Felix G, Binder A (2006) An extract of Penicillium chrysogenum elicits early defense-related responses and induces resistance in Arabidopsis thaliana independently of known signaling pathways. Physiol Mol Plant Pathol 67:180–193

    Article  Google Scholar 

  • Ting ASY, Mah SW, Tee CS (2010) Identification of volatile metabolites from fungal endophytes with biocontrol potential towards Fusarium oxysporum f. sp. cubense Race 4. Am J Agric Biol Sci 5(2):177–182

    Article  CAS  Google Scholar 

  • Tjamos SE, Flemetakis E, Paplomatas EJ, Katinakis P (2005) Induction of resistance to Verticillium dahliae in Arabidopsis thaliana by the biocontrol agent K-165 and pathogenesis-related proteins gene expression. Mol Plant-Microbe Interact 18:555–561

    Article  CAS  PubMed  Google Scholar 

  • Tohid VK, Taheri P (2015) Investigating binucleate Rhizoctonia induced defence responses in kidney bean against Rhizoctonia solani. Biocontrol Sci Tech 25:444–459

    Article  Google Scholar 

  • Ton J, Davison S, Van Loon LC, Pieterse CMJ (2001) Heritability of rhizobacteria-mediated induced systemic resistance and basal resistance in Arabidopsis. Eur J Plant Pathol 107:63–68

    Article  Google Scholar 

  • Tucci M, Ruocco M, De Masi L et al (2011) The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Mol Plant Pathol 12:341–354

    Article  CAS  PubMed  Google Scholar 

  • Uematsu K, Suzuki N, Iwamae T et al (2012) Increased fructose 16-bisphosphate aldolase in plastids enhances growth and photosynthesis of tobacco plants. J Exp Bot 63:3001–3009

    Article  CAS  PubMed  Google Scholar 

  • Unger C, Wilhelm I, Jünger R, Thalmann R (2006) Evidence of induced resistance of tomato plants against Phytophthora infestans by a water extract of dried biomass of Penicillium chrysogenum. Plant Dis Prot 113:225

    Article  Google Scholar 

  • Vadassery J, Ritter C, Venus Y et al (2008) The role of auxins and cytokinins in the mutualistic interaction between Arabidopsis and Piriformospora indica. Mol Plant-Microbe Interact 21:1371–1383

    Article  CAS  PubMed  Google Scholar 

  • Vadassery J, Tripathi S, Prasad R et al (2009) Monodehydroascorbate reductase 2 and dehydroascorbate reductase 5 are crucial for a mutualistic interaction between Piriformospora indica and Arabidopsis. J Plant Physiol 166:1263–1274

    Article  CAS  PubMed  Google Scholar 

  • van Hulten M, Pelser M, van Loon LC et al (2006) Costs and benefits of priming for defense in Arabidopsis. Proc Natl Acad Sci U S A 103:5602–5607

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Vandenbussche F, Vaseva I, Vissenberg K, van Der Straeten D (2012) Ethylene in vegetative development: a tale with a riddle. New Phytol 194:895–909

    Article  CAS  PubMed  Google Scholar 

  • Vargas WA, Wippel R, Goos S et al (2009) Plant-derived sucrose is a key element in the symbiotic association between Trichoderma virens and maize plants. Plant Physiol 151:792–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vargas R, Sonnentag O, Abramowitz G et al (2013) Drought influences the accuracy of simulated ecosystem fluxes: a model-data meta-analysis for Mediterranean oak woodlands. Ecosystems 16:749–764

    Article  CAS  Google Scholar 

  • Varma A, Verma S, Sudha SN et al (1999) Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl Environ Microbiol 65:2741–2744

    CAS  PubMed  PubMed Central  Google Scholar 

  • Varma A, Bakshi M, Lou B et al (2012) Piriformospora indica: a novel plant growth-promoting mycorrhizal fungus. Agric Res 1:117–131

    Article  Google Scholar 

  • Vázquez-de-aldana BR, Zabalgogeazcoa I, García-Ciudad A, García-Criado B (2013) An Epichloë endophyte affects the competitive ability of Festuca rubra against other grassland species. Plant Soil 362:201–213

    Article  CAS  Google Scholar 

  • Verhagen BWM, Glazebrook J, Zhu T et al (2004) The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol Plant-Microbe Interact 17:895–908

    Article  CAS  PubMed  Google Scholar 

  • Viterbo A, Wiest A, Brotman Y et al (2007) The 18mer peptaibols from Trichoderma virens elicit plant defence responses. Mol Plant Pathol 8:737–746

    Article  CAS  PubMed  Google Scholar 

  • Vitti A, Pellegrini E, Nali C et al (2016) Trichoderma harzianum T-22 induces systemic resistance in tomato infected by Cucumber mosaic virus. Front Plant Sci. https://doi.org/10.3389/fpls.2016.01520

  • Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840

    Article  CAS  PubMed  Google Scholar 

  • Voříšková J, Baldrian P (2013) Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J 7:477–486

    Article  PubMed  CAS  Google Scholar 

  • Vu TT, Hauschild R, Sikora RA (2006) Fusarium oxysporum endophytes induced systemic resistance against Radopholus similis on banana. Nematology 8:847–852

    Article  Google Scholar 

  • Vujanovic V, Goh YK (2012) qPCR quantification of Sphaerodes mycoparasitica biotrophic mycoparasite interaction with Fusarium graminearum: in vitro and in planta assays. Arch Microbiol 194:707–717

    Article  CAS  PubMed  Google Scholar 

  • Wachowska U, Głowacka K (2014) Antagonistic interactions between Aureobasidium pullulans and Fusarium culmorum, a fungal pathogen of winter wheat. Biol Control 59:635–645

    Google Scholar 

  • Wagh K, Patil P, Surana S, Wagh V (2012) Forskolin: upcoming anti-glaucoma molecule. J Postgrad Med 58:199–202

    Article  CAS  PubMed  Google Scholar 

  • Wakelin SA, Gupta VV, Harvey PR, Ryder MH (2007) The effect of Penicillium fungi on plant growth and phosphorus mobilization in neutral to alkaline soils from southern Australia. Can J Microbiol 53:106–115

    Article  CAS  PubMed  Google Scholar 

  • Waller F, Achatz B, Baltruschat H et al (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci U S A 102(38):13386–13391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waller F, Mukherjee K, Deshmukh SD et al (2008) Systemic and local modulation of plant responses by Piriformospora indica and related Sebacinales species. J Plant Physiol 165:60–70

    Article  CAS  PubMed  Google Scholar 

  • Walters DR, Havis ND, Paterson L et al (2011) Cultivar effects on the expression of induced resistance in spring barley. Plant Dis 95:595–600

    Article  Google Scholar 

  • Walters DR, Ratsep J, Havis ND (2013) Controlling crop diseases using induced resistance: challenges for the future. J Exp Bot 64:1263–1280

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Dai CC, Cao JL, DS X (2012) Comparison of the effects of fungal endophyte Gilmaniella sp. and its elicitor on Atractylodes lancea plantlets. World J Microbiol Biotechnol 28:575–584

    Article  PubMed  Google Scholar 

  • Waqas M, Khan AL, Hamayun M et al (2015) Endophytic fungi promote plant growth and mitigate the adverse effects of stem rot: an example of Penicillium citrinum and Aspergillus terreus. J Plant Interact 10:280–287

    Article  CAS  Google Scholar 

  • Waweru B, Turoop L, Kahangi E et al (2014) Non-pathogenic Fusarium oxysporum endophytes provide field control of nematodes, improving yield of banana (Musa sp.) Biol Control 74:82–88

    Article  Google Scholar 

  • Withers J, Dong X (2016) Posttranslational modifications of NPR1: a single protein playing multiple roles in plant immunity and physiology. PLoS Pathog 12:e1005707

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu L, Lv Y, Meng Z (2010) The promoting role of an isolate of dark-septate fungus on its host plant Saussurea involucrata Kar. et Kir. Mycorrhiza 20:127–135

    Article  CAS  PubMed  Google Scholar 

  • Xia C, Li N, Zhang X et al (2016) An epichloë endophyte improves photosynthetic ability and dry matter production of its host Achnatherum inebrians infected by Blumeria graminis under various soil water conditions. Fungal Ecol 22:26–34

    Article  Google Scholar 

  • Yadav RL, Shukla SK, Suman A, Singh PN (2009) Trichoderma inoculation and trash management effects on soil microbial biomass, soil respiration, nutrient uptake and yield of ratoon sugarcane under subtropical conditions. Biol Fertil Soils 45:461–468

    Article  Google Scholar 

  • Yadav J, Verma JP, Tiwari KN (2011) Plant growth promoting activities of fungi and their effect on chickpea plant growth. Asian J Biol Sci 4:291–299

    Article  Google Scholar 

  • Yamagiwa Y, Toyoda K, Inagaki Y, Ichinose Y, Hyakumachi M, Shiraishi T (2011) Talaromyces wortmannii FS2 emits β-caryophyllene, which promotes plant growth and induces resistance. J Gen Plant Pathol 77:336–341

    Article  CAS  Google Scholar 

  • Yamagiwa Y, Toyoda K, Inagaki Y, Ichinose Y, Shiraishi T (2013) Isolation and identification of a plant growth-promoting fungus from an agricultural field in Okayama prefecture. Sci Rep Fac 102:1–6

    CAS  Google Scholar 

  • Yedidia I, Srivastva AK, Kapulnik Y, Chet I (2001) Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant Soil 235:235–242

    Article  CAS  Google Scholar 

  • Yoshioka Y, Ichikawa H, Naznin HA et al (2012) Systemic resistance induced in Arabidopsis thaliana by Trichoderma asperellum SKT-1, a microbial pesticide of seed borne diseases of rice. Pest Manag Sci 68:60–66

    Article  CAS  PubMed  Google Scholar 

  • You YH, Yoon H, Kang SM et al (2012) Fungal diversity and plant growth promotion of endophytic fungi from six halophytes in Suncheon Bay. J Microbiol Biotechnol 22:1549–1556

    Article  PubMed  Google Scholar 

  • You YH, Cho HS, Song J et al (2014) Penicillium koreense sp. nov., isolated from various soils in Korea. J Microbiol Biotechnol 24(12):1606–1608

    Article  PubMed  Google Scholar 

  • Zavala-González EA, Escudero N, Lopez-Moya F et al (2015) Some isolates of the nematophagous fungus Pochonia chlamydosporia promote root growth and reduce flowering time in tomato. Ann Appl Biol 166:472–483

    Article  CAS  Google Scholar 

  • Zavala-González EA, Rodríguez-Cazorla E, Escudero N et al (2017) Arabidopsis thaliana root colonization by the nematophagous fungus Pochonia chlamydosporia is modulated by jasmonate signaling and leads to accelerated flowering and improved yield. New Phytol 213:351–364

    Article  PubMed  CAS  Google Scholar 

  • Zhang SJ, Wang L, Ma F et al (2012) Effects of mycorrhiza alone with or without nitrogen and phosphate on rice dry matter production and distribution. J Harbin Inst Technol 44:33–36

    CAS  Google Scholar 

  • Zhang Z, Zhao Z, Tang J et al (2014) A proteomic study on molecular mechanism of poor grain-filling of rice (Oryza sativa L.) inferior spikelets. PLoS One 9:e89140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang S, Gan Y, Xu B (2016) Application of plant-growth-promoting fungi Trichoderma longibrachiatum T6 enhances tolerance of wheat to salt stress through improvement of antioxidative defense system and gene expression. Front Plant Sci 7:1405

    PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Zhang C, Zhou W et al (2014) Diversity and plant growth-promoting ability of endophytic fungi from the five flower plant species collected from Yunnan, Southwest China. J Plant Interact 9:585–591

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial assistance from the University Grants Commission, Bangladesh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Motaher Hossain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hossain, M.M., Sultana, F., Islam, S. (2017). Plant Growth-Promoting Fungi (PGPF): Phytostimulation and Induced Systemic Resistance. In: Singh, D., Singh, H., Prabha, R. (eds) Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-10-6593-4_6

Download citation

Publish with us

Policies and ethics