Syntesis of Mesoporous Microparticles for Biomedical Applications

Article Preview

Abstract:

Towards the design of bioceramics with control over both macroscopic shape and mesoporosity, silica based mesoporous materials have been synthesized using evaporation-induced self-assembly method by two different routes: room temperature (RT) and aerosol-assisted synthesis (A-A). Two series varying surfactant/silica precursor ratio have been synthesized in order to check the mesopore ordering as a function of the structure directing agent amount in both preparation procedures. The A-A method leads to spherical microparticles, which exhibit mesopore ordering for a wider surfactant/silica range compared with room temperature method, which yield irregular shaped particles. Textural properties values show that for the same surfactant amount, aerosol-assisted method develops higher porosity values in the obtained silica microparticles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

181-194

Citation:

Online since:

March 2008

Export:

Price:

[1] J. K. Vasir, K. Tambwekar and S. Garg: Int. J. Pharm. Vol. 13 (2003), p.255.

Google Scholar

[2] U. Edlund and A. C. Albertsson: Adv. Polym. Sci. Vol. 67 (2002), p.157.

Google Scholar

[3] H. Kawaguchi: Prog. Polym. Sci. Vol. 25 (2000), p.1171.

Google Scholar

[4] S. Freiberg and X. X. Zhu: Int. J. Pharm. Vol. 1 (2004), p.282.

Google Scholar

[5] A. O. Eniola and D. A. Hammer: Biomaterials Vol. 26 (2005), p.661.

Google Scholar

[6] F. M. Chen, Z. F. Wu, H. H. Sun, H. Wu, S. N. Xin, Q. T. Wang, G. Y. Dong, Z. W. Ma, S. Huang, J. J. Zhang and Y. Jin: Int. J. Pharm. Vol. 307 (2006), p.23.

Google Scholar

[7] X. Wang, E. Wenk, X. Hu, G. R. Castro, L. Meinel, X. Wang, C. Li, H. Merkle and D. L. Kaplan: Biomaterials Vol. 28 (2007), p.4161.

DOI: 10.1016/j.biomaterials.2007.05.036

Google Scholar

[8] S. Mornet, J. Portier and E. Duguet: J. Magn. Magn. Mat. Vol. 293 (2005), p.127.

Google Scholar

[9] M. Vallet-Regí, A. Rámila, R. P. del Real and J. Pérez-Pariente: Chem. Mater. Vol. 13 (2001), p.308.

Google Scholar

[10] M. Vallet-Regí, F. Balas, M. Colilla and M. Manzano: Solid State Sci. Vol. 9 (2007), p.768.

DOI: 10.1016/j.solidstatesciences.2007.03.026

Google Scholar

[11] B.G. Trewyn, S. Giri, I. I. Slowing and V. S. -Y. Lin: Chem. Commun. Vol. 31 (2007), p.3236.

Google Scholar

[12] M. Vallet-Regí, F. Balas and D. Arcos: Angew. Chem. Int. Ed. Vol. 46 (2007), p.7548.

DOI: 10.1002/anie.200604488

Google Scholar

[13] M. Vallet-Regí, F. Balas, M. Colilla and M. Manzano: Prog. Solid State Ch. DOI: 10. 1016/j. progsolistchem. 2007. 10. 002.

Google Scholar

[14] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck: Nature Vol. 359 (1992), p.710.

Google Scholar

[15] D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka and G. D. Stucky: Science Vol. 279 (1998), p.548.

Google Scholar

[16] F. Torney, B. G. Trewyn, V. S. -Y. Lin and K. Wang: Nat. Nanotechnol. Vol. 2 (2007), p.295.

Google Scholar

[17] A. Vinu, M. Miyahara and K. Ariga: J. Nanosci. Nanotechno. Vol 6 (2006), p.1510.

Google Scholar

[18] M. Vallet-Regí: Chem. Eur. J. Vol. 12 (2006), p.5934.

Google Scholar

[19] H. Yang, Q. Shi, B. Tian, S. Xie, F. Zhang, Y. Yan, B. Tu and D. Zhao: Chem. Mater. Vol. 15 (2003), p.536.

Google Scholar

[20] Y. Lu, R. Ganguli, C. A. Drewien, M. T. Anderson, C. J. Brinker, W. Gong, Y. Guo, H. Soyez, B. Dunn, M. H. Huang and J. I. Zink: Nature Vol. 389 (1997), p.364.

DOI: 10.1038/38699

Google Scholar

[21] E. Ruiz-Hernández, A. López-Noriega, D. Arcos, I. Izquierdo-Barba, O. Terasaki and M. Vallet-Regí: Chem. Mater. Vol. 19 (2007), p.3455.

DOI: 10.1021/cm0705789

Google Scholar

[22] B. Julián-López, C. Boissière, C. Chanéac, D. Grosso, S. Vasseur, S. Miraux, E. Duguet and C. Sánchez : J. Mater. Chem. Vol. 17 (2007), p.1563.

DOI: 10.1039/b615951f

Google Scholar

[23] T. A. Ostomel, Q. Shi, C. -K. Tsung, H. Liang and G. D. Stucky: Small Vol. 2 (2006), p.1261.

Google Scholar

[24] Y. Lu, H. Fan, A. Stump, T. L. Ward, T. Rieker and C. J. Brinker: Nature Vol. 398 (1999), p.223.

Google Scholar

[25] G. V. Rama Rao, G. P. López, J. Bravo, H. Pham, A. K. Datye, H. Xu and T. L. Ward: Adv. Mater. Vol. 14 (2002), p.1301.

DOI: 10.1002/1521-4095(20020916)14:18<1301::aid-adma1301>3.0.co;2-t

Google Scholar

[26] X. Ji, Q. Hu, W. Hampsey, X. Qiu, L. Gao, J. He and Y. Lu: Chem. Mater. Vol. 18 (2006), p.2265.

Google Scholar

[27] C. J. Brinker, Y. Lu, A. Sellinger and H. Fan: Adv. Mater. Vol. 11 (1999), p.579.

Google Scholar

[28] Z. X. Tang, S. Natis, C. M. Sorensen, G. C. Hadjipanayis and K. J. Kablunde: J. Magn. Magn. Mater. Vol. 80 (1989), p.285.

Google Scholar

[29] W. A. Kalzmarek, B. W. Ninham and A. Calka: J. Appl. Phys. Vol 70 (1991), p.5909.

Google Scholar

[30] M. Vallet-Regí, M. T. Gutiérrez-Ríos, M. P. Alonso, M. I. De Frutos and S. Nicolopoulos: J Solid State Chem. Vol 112 (1994), p.58.

Google Scholar

[31] M. Vallet-Regí: Preparative strategies for controlling structure and morphology of metal oxides, edited by Narosha Publishing House, India, (1995).

Google Scholar

[32] A. Martínez, J. Peña, M. Labeau, J. M. González-Calbet and M. Vallet-Regí: J. Mater. Res. Vol 10 (1995), p.1307.

DOI: 10.1557/jmr.1995.1307

Google Scholar

[33] M. V. Cabañas, M. Vallet-Regí, M. Labeau and J. M. González-Calbet: J. Mater. Res. Vol 8 (1993), p.2694.

DOI: 10.1557/jmr.1993.2694

Google Scholar

[34] J. Israelachvili, Intermolecular and Surface Forces, edited by Academia, San Diego, CA (1992).

Google Scholar

[35] F. Balas, D. Arcos. J. Pérez-Pariente and M. Vallet-Regí : J. Mater. Res. Vol. 16 (2001), p.1345.

Google Scholar