Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 24, 2014

Investigation of (n,γ) reactions in fissionable fluids in a hybrid reactor system

Untersuchung von (n,γ) Reaktionen an einigen spaltbaren Flüssigkeiten in einem Hybrid-Reaktorsystem
  • M. Günay
From the journal Kerntechnik

Abstract

In this study, the effect of (n,γ) reactions in spent fuel-grade (SFG)-PuO2, UO2, NpO2 and UCO contents was investigated in a designed hybrid reactor system. In this system, the molten salt-heavy metal mixtures 93 – 85 % Li20Sn80 + 5 % SFG-PuO2 and 2 – 10 % UO2, 93 – 85 % Li20Sn80 + 5 % SFG-PuO2 and 2 – 10 % NpO2, 93 – 85 % Li20Sn80 + 5 % SFG-PuO2 and 2 – 10 % UCO were used as fluids. Beryllium (Be) is used as neutron multiplier by (n,2n) reactions. Thence, a Be zone with a width of 3 cm was used in order to contribute on fissile fuel breeding between the liquid first wall and blanket. (n,γ) reactions were calculated in the liquid first wall, blanket and shield zones, which SFG-PuO2, UO2, NpO2 and UCO contents. 9Cr2WVTa ferritic steel with the width of 4 cm was used as the structural material. Three-dimensional nucleonic calculations were performed using the most recent version MCNPX-2.7.0 the Monte Carlo code and nuclear data library ENDF/B-VII.0.

Kurzfassung

In dieser Studie wurden in einem konzipierten Reaktorsystem (n,γ) Reaktionen bei Spent-Fuel-grade Komponenten (SFG)-PuO2, UO2, NpO2 und UCO untersucht. In diesem System wurden als Fluide gelöste Salz-Schwermetal-Mischungen aus 93 – 85 % Li20Sn80 + 5 % SFG-PuO2 und 2 – 10 % UO2, 93 – 85 % Li20Sn80 + 5 % SFG-PuO2 und 2 – 10 % NpO2, 93 – 85 % Li20Sn80 + 5 % SFG-PuO2 und 2 – 10 % UCO verwendet. Beryllium wird über die (n, 2n) Reaktion als Neutronenmultiplikator verwendet. Deshalb wurde zwischen der ersten Flüssigwand und dem Blankett ein 3 cm dicker Be-Bereich eingesetzt, um so die Herstellung von spaltbarem Brennstoff zu fördern. Die (n,γ) Reaktion wurde an der aus SFG-PuO2, UO2, NpO2 und UCO, bestehenden ersten Flüssigwand, am Blankett- und am Shield-Bereich berechnet. Als Baumaterial wurde ein vier Zentimeter dicker ferritischer Stahl – 9Cr2WVTa – verwendet. Dreidimensionale nukleonische Berechnungen wurden mit Hilfe der neuesten Version des Monte Carlo Codes MCNPX-2.7.0 und unter Verwendung der nuklearen Datenbibliothek ENDF/B-VII.0 durchgeführt.

References

1 Şahin, S.; Übeyli, M.: Radiation Damage Studies on The First Wall of a HYLIFE-II Type Fusion Breeder. Energy Conversion and Management46 (2005) 318510.1016/j.enconman.2005.03.007Search in Google Scholar

2 Şahin, S.; et al.: Effects of spectral shifting in an inertial confinement fusion system. Kerntechnik70 (2005) 23310.3139/124.100251Search in Google Scholar

3 Şarer, B.; Günay, M.; et al.: Three-Dimensional Neutronic Calculations For The Fusion Breeder Apex Reactor. Fusion Science and Technology52 (2007) 107Search in Google Scholar

4 Günay, M.; et al.: Three-Dimensional Neutronic Calculations for a Fusion Breeder Apex Reactor Using Some Libraries. Annals of Nuclear Energy38 (12) (2011) 275710.1016/j.anucene.2011.08.007Search in Google Scholar

5 Günay, M.; et al.: Three-dimensional Monte Carlo Calculation of Gas Production in Structural Material of APEX Reactor for Some Evaluated Data Files. Annals of Nuclear Energy55 (2013) 29210.1016/j.anucene.2013.01.001Search in Google Scholar

6 Günay, M.; et al.: The Effect on Radiation Damage of Structural Material in a Hybrid System By Using a Monte Carlo Radiation Transport Code. Annals of Nuclear Energy63 (2013) 15710.1016/j.anucene.2013.07.038Search in Google Scholar

7 IAEA: International Atomic Energy Agency IAEA-TECDOC-1349, 2003Search in Google Scholar

8 Christofilos, N. C.: Design for A High Power-Density Astron Reactor. Journal of Fusion Energy8 (1989) 9710.1007/BF01050784Search in Google Scholar

9 Moir, R. W.: Liquid First Walls For Magnetic Fusion Energy Configurations. Nuclear Fusion37 (1997) 55710.1088/0029-5515/37/4/I13Search in Google Scholar

10 Abdou, M. A.; et al.: Chapter 1: Overview. APEX Interim Report, 1999Search in Google Scholar

11 Abdou, M. A.; et al.: On The Exploration of Innovative Concepts for Fusion Chamber Technology. Fusion Engineering and Design54 (2001) 18110.1016/S0920-3796(00)00433-6Search in Google Scholar

12 Abdou, M. A.: Preface. Fusion Engineering and Design72 (2004) 110.1016/j.fusengdes.2004.10.001Search in Google Scholar

13 Abdou, M. A.; et al.: Overview of Fusion Blanket R&D in The US Over The Last Decade. Nuclear Engineering and Technology37 (5) (2005) 401Search in Google Scholar

14 Piera, M.; et al.: Hybrid Reactors: Nuclear Breeding or Energy Production?Energy Conversion and Management51 (2010) 175810.1016/j.enconman.2010.01.025Search in Google Scholar

15 Ying, A.; et al.: Chapter 5: Thick Liquid Blanket Concept, APEX Interim Report, 1999Search in Google Scholar

16 Şarer, B.; et al.: Calculations of Neutron-Induced Production Cross-Sections of 180,182,183,184,186W up to 20 MeV. Annals of Nuclear Energy36 (2009) 41710.1016/j.anucene.2008.11.025Search in Google Scholar

17 Günay, M.: Investigation of radiation damage in structural material of APEX reactor by using Monte Carlo method. Annals of Nuclear Energy53 (2013) 5910.1016/j.anucene.2012.06.038Search in Google Scholar

18 Günay, M.; Kasap, H.: Neutronic Investigation of The Application of Certain lutonium-Mixed Fluids in a Fusion-Fission Hybrid Reactor. Annals of Nuclear Energy63 (2014) 43210.1016/j.anucene.2013.08.024Search in Google Scholar

19 Chadwick, M. B.; et al.: ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology. Nuclear Data Sheets, 107 (2006) 293110.1016/j.nds.2006.11.001Search in Google Scholar

20 Pelowitz, D. B.: MCNPX User’s Manual, Version 2.7.0, LA-CP-11-00438, 2011Search in Google Scholar

21 Günay, M.: Investigation of Neutronic Effects in Structural Material of a Hybrid Reactor by using The MCNPX Monte Carlo Transport Code. Kerntechnik 78:3 (2013) 198Search in Google Scholar

22 Şarer, B.; et al.: Comparisons of The Calculations Using Different Codes Implemented in MCNPX Monte Carlo Transport Code for Accelerator Driven System Target. Fusion Science Technology61 (2012) 302Search in Google Scholar

Received: 2014-01-13
Published Online: 2014-06-24
Published in Print: 2014-06-26

© 2014, Carl Hanser Verlag, München

Downloaded on 12.5.2024 from https://www.degruyter.com/document/doi/10.3139/124.110410/html
Scroll to top button