Cover Image

Optimization and Characterization of Adsorbent from Palm Kernel Shell Waste Using H3PO4 Activator

M. Julian Herlambang, Adityas Agung Ramandani, Devy Cendekia, Livia Rhea Alvita, Yeni Ria Wulandari, Shintawati Shintawati, Mawar Siti Purnani, Dimas Amirul Mukminin Nur Efendi

Abstract


Palm kernel shell is solid waste produced from the processing of crude palm oil (CPO). In this context, phosphoric acid (H3PO4) serves as an essential activator for producing an adsorbent with maximum micropore under operating conditions at a temperature of <450oC. Therefore, this study aimed to determine the optimal adsorbent condition of the palm kernel shell using H3PO4activator. The production process was optimized using Response Surface Methodology (RSM) and Central Composite Design (CCD) methods with activator concentration variations of 4%, 5%, and 6%, at activation times of 23 hours, 24 hours, and 25 hours, respectively. The quality of the adsorbent produced fulfilled SNI standard 06-3730-1995, characterized by water content of 1.001%, ash content of 5.767%, missing substance level of 18.932%, and fixed carbon content of 75.301%. Furthermore, this work effectively optimized the RSM and CCD adsorbent production process, achieving 4.785% variation in activator concentration and 24.679 hours activation time.


Keywords


adsorbent; fixed carbon; H3PO4 activator; iodine charcoal power; palm kernel shell

Full Text:

DOWNLOAD PDF

References


Fauziah, N. (2009). Pembuatan Arang Aktif Secara Langsung dari Kulit Acacia mangium Wild Dengan Aktivasi Fisika dan Aplikasinya Sebagai Adsorben. Skripsi, Dep. Hasil Hutan, IPB.

BPS, Stastika Kelapa Sawit Indonesia. (2020), 1-9. Retrieved from https://www.bps.go.id/id/publication/2021/11/30.

Muhammad H. J., Dadan Permana. (2014). Pemanfaatan Tandan Kosong Sawit Untuk Pupuk Organik Pada Intercropping Kelapa Sawit Dan Jagung. Jurnal Pengkajian dan Pengembangan Teknologi Pertanian. 17(1), 27-35.

Khairunisa. R. (2008). Kombinasi Teknik Elektrolisis Dan Teknik Adsorpsi Menggunakan Karbon Aktif Untuk Menurunkan Konsentrasi Senyawa Fenol Dalam Air. Skripsi, FMIPA Universitas Indonesia.

Rizna, S. R. (2017). Pemanfaatan Adsorben Alami (Biosorben) Untuk Mengurangi Kadar Timbal (Pb) Dalam Limbah Cair. Prosiding Seminar Nasional Biotik 2017, 271-279.

Efendi, D. A. M. N., Ramandani, A. A., Cendekia, D., & Hanifah, W. (2023). Industrial wastewater treatment using venture injector type Micro-bubble aeration as a reduction of dissolved Iron (Fe2+) levels. Journal of Natural Sciences and Mathematics Research, 9(2).

Sari, N. P., Dewi, A. I., Teguh, D., & Wulandari, Y. R. (2023). Pengaruh Konsentrasi Karbon Disulfida (Cs2) Terhadap Kinerja Biosorben Selulosa Xanthate Untuk Penjerapan Logam Berat. Jurnal Sains dan Teknologi Lingkungan, 15(2), 177-192.

Hendra, D. (2006). The Manufacture of Activated Charcoal from Oil Palm Shells and Mixture of Wood Sawdust. Penelitian Hasil Hutan, 24(2), 1-22.

Najmia, H., Mahreda, E. S., Mahyudin, R. P., & Kissinger. (2021). Pemanfaatan Arang Aktif Cangkang Kelapa Sawit Teraktivasi H3PO4 untuk Penurunan Kadar Besi (Fe), Mangan (Mn) dan Kondisi pH pada Air Asam Tambang. Jurnal Enviro Scientea, 17(2), 21-29.

Hanum, F., Bani, O., & Wirani, L. (2017). Characterization of activated carbon from rice husk by HCl activation and its application for lead (Pb) removal in car battery wastewater. IOP Conference Series: Materials Science and Engineering, 180 (1).

Kielbasa, K., Bayar, S., Varol, E. A., Srenscek-Nazzal, J., Boscaka, M., Miadlicki, P., Serafin, J., Wrobel, R. J., & Michalkiewicz, B. (2022). Carbon dioxide adsorption over activated carbons produced from molasses using H2SO4, H3PO4, HCl, NaOH, and KOH as activating agents. Molecules, 27(21), 7467.

Tani, D. (2015). The effect of activation time on the chemical structure and quality of activated carbon from coconut shell charcoal using ZnCl2 activator. International Journal of Applied Chemistry, 11(1), 73-83.

Neethu, B., Bhowmick, G., & Ghangrekar, M. (2019). A novel proton exchange membrane developed from clay and activated carbon derived from coconut shell for application in microbial fuel cell. Biochemical Engineering Journal, 148, 170-177.

Gurten, I. I., & Aktas, Z. (2020). Enhancing the performance of activated carbon based scalable supercapacitors by heat treatment. Applied Surface Science, 514, doi: 10.1016/j.apsusc.2020.145895.

Pradeep, G. G., Sukumaran, K. P., George, G., Muhammad, F., & Mathew, N. (2016). Production and Characterization of Activated Carbon and Its Application in Water Purification. International Research Journal of Engineering and Technology, 443-447.

Ramandani, A. A., Shintawati, S., Aji, S. P., & S. Sunarsi. (2022). Pemanfaatan Lignin Serai Wangi Sebagai Lignin Resorsinol Formaldehida (LRF) Menggunakan Ultrasonic Microwave-Assisted Extraction (UMAE). CHEESA: Chemical Engineering Research Articles, 5(1), 40-40, doi: 10.25273/cheesa.v5i1.10348.40-48.

Haji, A. G., Pari, G., Nazar, M., & Habibati, H. (2013). Characterization of activated carbon produced from urban organic waste. International Journal of Science and Engineering, 5(2), doi: 10.12777/ijse.5.2.89-94.

Haji, A. G., Pari, G., Habibati., Amirrudin., & Maulina. (2010). Kajian Mutu Hasil Pirolisis Cangkang Kelapa Sawit. Jurnal Purifikasi, 11(1), 77-86.

Wulandari, Y. R., Silmi, F. F., Ermaya, D., Sari, N. P., & Teguh, D. (2023) Pengaruh Suhu Pirolisis Jerami Padi Terhadap Variabel Komposisi Produk Pirolisis Menggunakan Reaktor Batch. Inovasi Teknik Kimia, 8(3), 167-172.

Diharyo., Salampak., Damanik, Z., & Gumiri, S. (2020). Pengaruh lama aktifasi dengan H3PO4 dan ukuran butir arang cangkang kelapa sawit terhadap ukuran pori dan luas permukaan butir arang aktif. Prosiding Seminar Nasional Lingkungan Lahan Basah, 5(1), 48-54.

Hendra D., & Darmawan, S. (2007). Sifat Arang Aktif Dari Tempurung Kemiri. Jurnal Penelitian Hasil Hutan, 25(4), 291-302.

Botahala, L. (2019). Perbandingan Efektivitas Daya Adsorpsi Sekam Padi dan Cangkang Kemiri terhadap Logam Besi (Fe) pada Air Sumur Gali. Sleman: Deepublish, CV. Budi Utama.

Syamsudin, K. W. A. (2017). Sintesis dan Karakterisasi Karbon Aktif Tandan Pisang Dengan Aktivator H3PO4 10% untuk Adsorpsi Logam Pb (II) Dan Cr (VI) Dalam Larutan. Repository Universitas Islam Indonesia. 1-109. Retrieved from https://dspace.uii.ac.id/123456789/27730.

Hartanto, S., & Ratnawati, R. (2010). Pembuatan karbon aktif dari tempurung kelapa sawit dengan metode aktivasi kimia. Jurnal Sains Materi Indonesia, 12(1), 12-16.

Wiskandar, W., & Fuadi, N, A. (2022). Pengaruh aplikasi biochar cangkang kelapa sawit dan pupuk kompos terhadap kemantapan agregat tanah lahan bekas tambang batubara dan hasil kedelai. Respository Universitas Jambi. Retrieved from https://repository.unja.ac.id/id/eprint/33537.

Prasetyo, Y., & Nasrudin, H. (2013). Penentuan Konsentrasi ZnCl2 pada Proses Pembuatan Karbon Aktif Tongkol Jagung dan Penurunan Konsentrasi Surfaktan Linier Alkyl Benzene Sulphonate (LAS). UNESA Journal of Chemistry, 2(3), 231-235.


Article Metrics

Abstract has been read : 193 times
DOWNLOAD PDF file viewed/downloaded: 0 times


DOI: http://doi.org/10.25273/cheesa.v6i2.15906.118-125

Refbacks



Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Accredited:
   
Indexed by:
         

        

                                                         

                                                                                     Creative Commons License

Chemical Engineering Research Articles by http://e-journal.unipma.ac.id/index.php/cheesa is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
                                                                                         
Copyright of CHEESA: Chemical Engineering Research Articles, ISSN 2614-8757 (Print)2615-2347 (Online)
Published by Universitas PGRI Madiun
  
Web Analytics View Statistic