Skip to main content

Advertisement

Log in

Green Applications of Carbon Nanostructures produced by Plasma Techniques

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The study of several types of plasma reactors used to obtain carbon nanostructures (CNS) is realized in the Laboratory of Plasma Applications. To obtain carbon nanotubes (CNT) thermal plasma was used and carbon nanofibers (CNF) were obtained with glow discharge. Optical emission spectroscopy was applied to correlate some plasma parameters with CNS growth. Several analytical techniques are used to study CNS obtained by both plasma techniques.

In this work, we present results concerning the use of CNS as harmful gases traps and some results of a CNT based supercapacitor prototype are also depicted.

Experimental results here detailed, show the capacity of CNF to absorb nitrogen oxides (NOx), sulfur dioxide (SO2) and, at less proportion, carbon dioxide (CO2).

CNF films were obtained by electrophoretic deposition technique and by adding CNT ink; preliminary results showed a capacitance value of 2.69 F/g. This value remains still low compared to some supercapacitors, therefore additional work has to be done in order to improve the capacitance value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. F. De Volder, S. H. Tawfick, R. H. Baughman, A. J. Hart. Science. 339, 535 (2013).

    Google Scholar 

  2. T. Akasaka, F. Watari. Acta biomaterialia. 5, 607 (2009).

    Article  CAS  Google Scholar 

  3. Z. Chen, L. Zhang, Y. Tang, Z. Jia. Applied Surface Science. 252, 2933 (2006).

    Article  CAS  Google Scholar 

  4. Mochida, I., Kawabuchi, Y., Kawano, S., Matsumura, Y., & Yoshikawa, M. Fuel, 76(6), 543–548. (1997).

  5. Zhao, P. Y., Zhang, J., Li, Q., & Wang, C. Y. Journal of Power Sources, 334, 170–178. (2016).

  6. Daniel L. Schodek, P. Ferreira, M. F. Ashby, Nanomaterials, Nanotechnologies and Design: An Introduction for Engineers and Architects, edited by Butterworth-Heinemann. China, 2009, p. 560.

  7. T. Masciangioli, W.X. Zhang. Environmental science & technology. 37, 102A (2003).

  8. UNICEF and World Health Organization in Progress on sanitation and drinking water 2015, edited by A. Grojec 2015, p.80

  9. G.A. Codd, L.F. Morrison, J.S. Metcalf. Toxicology and applied pharmacology, 203, 264 (2005).

    Article  CAS  Google Scholar 

  10. W.W. Carmichael, G.L. Boyer. Harmful Algae, 54, 194 (2016).

    Article  Google Scholar 

  11. Haisheng Chen, Yulong Ding, Toby Peters and Ferdinand Berger, Patent No. 2 643 742 (30 Aug 2007)

    Google Scholar 

  12. Yadav, A., Teja, A. K., & Verma, N. J. Environ. Chem. Eng., 4(2), 1504–1513. (2016).

  13. A. Srivastava, O. N. Srivastava, S. Talapatra, R. Vajtai, P. M. Ajayan. Nat. Mater. 3, 610 (2004).

    Article  CAS  Google Scholar 

  14. S.P. Patole, P.S. Alegaonkar, H.C. Lee, J.B. Yoo. Carbon, 46, 1987 (2008).

    Article  CAS  Google Scholar 

  15. A. S Brady-Estevez, S. Kang, M. Elimelech. Small, 4, 481 (2008).

    Google Scholar 

  16. C. D. Vecitis, M. H. Schnoor, M. S. Rahaman, J. D Schiffman, M. Elimelech. Environmental science & technology, 45, 3672 (2011).

    Article  CAS  Google Scholar 

  17. S. T. Mostafavi, M. R. Mehrnia, A.M. Rashidi. Desalination, 238, 271 (2009).

    Article  CAS  Google Scholar 

  18. H. Yan, G. Pan, H. Zou, X. Li, H. Chen. Chinese Science Bulletin, 49, 1694 (2004).

    Article  CAS  Google Scholar 

  19. C.D. Vecitis, K.R. Zodrow, S. Kang, M. Elimelech. ACS nano, 4, 5471 (2010).

    Article  CAS  Google Scholar 

  20. N. M. Mubarak, J. N. Sahu, E. C. Abdullah, N. S. Jayakumar. Separation & Purification Reviews. 43, 311 (2014).

    Article  CAS  Google Scholar 

  21. M. S. Nasser, M. Khraisheh, M. A. Atieh. Separation and Purification Technology. 157, 141 (2016).

    Article  CAS  Google Scholar 

  22. G. P. Rao, C. Lu, F. Su. Separation and Purification Technology, 58, 224 (2007).

    Article  CAS  Google Scholar 

  23. X. Qu, P.J. Alvarez, Q. Li. Water research, 47, 3931 (2013).

    Article  CAS  Google Scholar 

  24. V.K. Upadhyayula, S. Deng, M.C. Mitchell, G.B. Smith. Science of the Total Environment, 408, 1 (2009).

    Article  CAS  Google Scholar 

  25. M. Mauter, M. Elimelech, Environmental Science & Technology, 42, 5843 (2008).

    Article  CAS  Google Scholar 

  26. V. Thavasi, G. Singh, S. Ramakrishna. Energy & Environmental Science, 1, 205 (2008).

    Article  CAS  Google Scholar 

  27. World Health Organization: Ambient (Outdoor) Air Quality and Health Fact sheet No. 313 (2014a).

  28. I. Mochida, Y. Kawabuchi, S. Kawano, Y. Matsumura, M. Yoshikawa. Fuel 76, 543 (1997).

    Article  CAS  Google Scholar 

  29. I.S. Yunus, Harwin, A. Kurniawan , D. Adityawarman, A. Indarto. Environmental, Technology Reviews, 1, 136 (2012).

    Article  CAS  Google Scholar 

  30. R.Q. Long, R.T. Yang. Amer. Chem. Soc. 123, 2058 (2001).

    Article  CAS  Google Scholar 

  31. R. Walawalkar, J. Apt, R. Mancini. Energy Policy, 5, 2558 (2007).

    Article  Google Scholar 

  32. P. Denholm, T. Holloway. Environmental Science & Technology, 39, 9016 (2005).

    Article  CAS  Google Scholar 

  33. U.S. Energy Information Administration, Report No. DOE/EIA-0484, 2016.

  34. H. Ibrahim, A. Ilinca, J. Perron. Renewable Sustainable Energy Rev. 12, 1221 (2008).

    Article  CAS  Google Scholar 

  35. K. Bilen, O. Ozyurt, K. Bakirci, S. Karsli, S. Erdogan, M. Yilmaz, O. Comaklı. Renewable Sustainable Energy Rev. 12, 1529 (2008).

    Article  CAS  Google Scholar 

  36. H. Chen, Y. Cong, W. Yang, C. Tan, Y. Li, Y. Ding. Prog. Nat. Sci.19, 291 (2009).

    Article  CAS  Google Scholar 

  37. L.G. Chen, J.L. Zheng, F.R. Sun. Energ Convers Manage 4, 2393 (2003).

    Article  CAS  Google Scholar 

  38. M. Beaudin, H. Zareipour, A. Schellenberglabe, W. Rosehart. Energy for Sustainable Development 14, 302 (2010).

    Article  Google Scholar 

  39. P. Aurelien, U. Husnu Emrah, K. Alokik, M. Steve, C. Manish. Appl. Phys. Lett. 87, 203511 (2005).

    Article  CAS  Google Scholar 

  40. T. Matsumoto, T. Komatsu, K. Arai, T. Yamazaki, M. Kijima, H. Shimizu, J. Nakamura. Chemical Communications, 7, 840 (2004).

    Article  CAS  Google Scholar 

  41. G.X. Wang, J. Ahn, J. Yao, M. Lindsay, H.K. Liu, S.X. Dou, Preparation and characterization of carbon nanotubes for energy storage, Journal of Power Sources 119–121 (2003) 16–23

    Google Scholar 

  42. H. Choi, S. Jung, J. Seo, D. Chang, L. Daic, J. Baek, Graphene for energy conversion and storage in fuel cells and supercapacitors, Nano Energy (2012) 1, 534–551

  43. H. Zhan, J. Xiao, Z. Nie, X. Li, C. Wang, J. Zhang, J. Liu, Current Opinion in Chem. Engineering, 2, 151 (2013).

    Article  Google Scholar 

  44. Q. Gao PhD Thesis, Optimizing carbon/carbon supercapacitors in aqueous and organic electrolytes, Université d’Orleans 2013 p38

  45. A. Garcia, P. Miles, T. Centeno, J. Rojo. Uniaxially oriented carbon monoliths as supercapacitor electrodes, Electrochemical Acta 55 (2010) 8539–8544

    Article  CAS  Google Scholar 

  46. A. Szczurek, G. Amaral, V. Fierro, A. Pizzi, A. Celzard, The use of tannin to prepare carbon gels. Part II. Carbon cryogels. Carbon 49 (2011) 2785–2794.

    CAS  Google Scholar 

  47. S. Candelaria, Y. Shao, W. Zhou, X. Li, J. Xiao, J. Zhang, Y. Wang, J. Liu, J. Li, G. Cao. Nano Energy, 1, 195 (2012).

    Article  CAS  Google Scholar 

  48. E. Frackowiak, F. Beguin. Carbon, 40, 1775 (2002).

    Article  CAS  Google Scholar 

  49. C. Du, N. Pan. Nanotechnology Law & Business, 569 (2007)

    Google Scholar 

  50. D. Cott, M. Verheijen, O. Richard, I. Radu, S. De Gendt, S. van Elshocht , P. Vereecken. Carbon, 58, 59 (2013).

    Article  CAS  Google Scholar 

  51. J. Baker, Energy Policy 36, 4368 (2008).

    Article  Google Scholar 

  52. Z.P. Huang, J.W. Xu, Z.F. Ren, J.H. Wang, M.P. Siegal, P.N. Provencio. Applied physics letters, 73, 3845 (1998).

    Article  CAS  Google Scholar 

  53. A. Thess, R. Lee, P. Nikolaev, H. Dai. Science, 273, 483 (1996).

    CAS  Google Scholar 

  54. C. Journet, W.K. Maser, P. Bernier, A. Loiseau, M.L. De La Chapelle, D.L.S. Lefrant, J.E. Fischer. Nature, 388, 756 (1997).

    Article  CAS  Google Scholar 

  55. M. Ishigami, J. Cumings, A. Zettl, S. Chen. Chemical Physics Letters, 319, 457 (2000).

    Article  CAS  Google Scholar 

  56. H. Lange, M. Sioda, A. Huczko, Y. Zhu, H.W. Kroto, D.R.M. Walton. Carbon, 41, 1617 (2003).

    CAS  Google Scholar 

  57. R. Smajda, J.C. Andresen, M. Duchamp, R. Meunier, S. Casimirius, K. Hernadi, A. Magrez. Physica status solidi (b), 246, 2457 (2009).

    Article  CAS  Google Scholar 

  58. S.P. Patole, P.S. Alegaonkar, H.C. Lee, J.B. Yoo. Carbon, 46, 1987 (2008).

    Article  CAS  Google Scholar 

  59. R. Kar, N.N. Patel, N. Chand, R.K. Shilpa, R.O. Dusane, D.S. Patil, S. Sinha. Carbon, 106, 233 (2016).

    Article  CAS  Google Scholar 

  60. M.S. Bell, K.B. Teo, R.G. Lacerda, W.I. Milne, D.B. Hash, M. Meyyappan. Pure and applied chemistry, 78, 1117 (2006).

    Article  CAS  Google Scholar 

  61. K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, W. I. Milne, G. Pirio, P. Legagneux, F. Wyczisk, J. Olivier, D. Pribat. J. Vac. Sci. Technol. B, 20, 116 (2002).

    Article  CAS  Google Scholar 

  62. N. Yusoff, N.H. Saad, M. Nabipoor, S. Sulaiman, D. Bien, C. Sheng. Advanced Materials Research Journals, 938, 58 (2013).

    Article  CAS  Google Scholar 

  63. M. Pacheco, J. Pacheco, R. Valdivia in Synthesis of Carbon Nanofibers by a Glow-arc Discharge, edited by Ashok Kumar (INTECH Open Access Publisher, 2010), p. 438.

  64. M.J. Pacheco, PhD. Thesis, Université Paul Sabatier, 2003.

  65. H. Lange, A. Huczko, M. Sioda, M. Pacheco, M. Razafinimanana, A. Gleizes. Plasma Chemistry and Plasma Processing, 22, 523 (2002).

    Article  CAS  Google Scholar 

  66. C. Du, N. Pan. Journal of Power Sources, 160, 1487 (2006).

    Article  CAS  Google Scholar 

  67. C. Alvarado, Eng. Thesis, Universidad Nacional Autónoma de México, 2010.

  68. T. Matsuura, K. Taniguichi, T. Watanabe. Thin Solid Films, 515, 4240 (2007).

    Article  CAS  Google Scholar 

  69. A. Mansour, M. Razafinimanana, M. Monthioux, M. Pacheco, A. Gleizes. Carbon, 45, 1651 (2007).

    Article  CAS  Google Scholar 

  70. M. Monthioux, M. Pacheco, H. Allouche, M. Razafinimanana, N. Caprais, L. Donnadieu, A. Gleizes. American Institute of Physics Conference Proceedings, 633, 182 (2002).

    Article  CAS  Google Scholar 

  71. N. Estrada, PhD. Thesis, Instituto Tecnológico de Toluca, 2011.

  72. J.A. Juanico, MSc. Thesis, Universidad Autónoma Metropolitana, 2004.

  73. J.Y. Lee, H.L. Lee, S. Kim. Materials Science Forum, 475, 2463 (2005).

    Article  Google Scholar 

  74. C.H. Wu. Journal of Hazardous Materials, 144, 93 (2007).

    Article  CAS  Google Scholar 

  75. R. García, Lic. Thesis, Instituto Tecnológico de Toluca, (2011)

  76. E. Frackowiak, F. Beguin,. Carbon, 39, 937 (2001)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pacheco, M., Pacheco, J., Valdivia, R. et al. Green Applications of Carbon Nanostructures produced by Plasma Techniques. MRS Advances 2, 2647–2659 (2017). https://doi.org/10.1557/adv.2017.524

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2017.524

Navigation