Skip to main content
Log in

Influence of Gadolinium on Carbon Arc Plasma and Formation of Fullerenes and Nanotubes

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Gadolinium-doped (0.8 at.%) graphite anodes were dc arced to produce different nanocarbons. Emission spectroscopy was performed to determine the temperature and column density distributions of C2 (a3Πuν=0) in the arc plasma under 13.3 and 60 kPa pressures in helium atmosphere. The solid products were analyzed by UV-VIS, TOF MS, HR SEM, and TEM techniques. The influence of metal catalyst on the formation of C60, and endohedral fullerenes, and carbon nanotubes is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. R. Mac Rae, Plasma Chem. Plasma Proc. 9, 855 (1989).

    Google Scholar 

  2. C. C. Lee and G. L. Huffman, Environ. Progress 8, 190 (1989).

    Google Scholar 

  3. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, Nature 318, 162 (1985).

    Google Scholar 

  4. W. Krätschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, Nature 347, 354 (1990).

    Google Scholar 

  5. S. Ijima, Nature 354, 56 (1991).

    Google Scholar 

  6. Carbon Materials for Advanced Technologies, ed. T. D. Burchell, Pergamon Press, Amsterdam (1999).

    Google Scholar 

  7. A. Huczko, Full. Sci. Technol. 5, 1091 (1997).

    Google Scholar 

  8. W. Liwa, Transition Met. Chem. 21, 583 (1996).

    Google Scholar 

  9. H. Lange, A. Huczko, P. Byszewski, E. Mizera, and H. Shinohara, Chem. Phys. Lett. 289, 174 (1998).

    Google Scholar 

  10. A. Huczko, H. Lange, and T. Sogabe, J. Phys. Chem. A, 104, 10708 (2000).

    Google Scholar 

  11. S. Iijima and T. Ichihashi, Nature 363, 603 (1993).

    Google Scholar 

  12. C. Journet and P. Bernier, Appl. Phys. A. 67, 1 (1998).

    Google Scholar 

  13. A. Loiseau and H. Pascard, Chem. Phys. Lett. 256, 246 (1996).

    Google Scholar 

  14. C. Guerret-Piecourt, Y. Le Bouar, A. Loiseau and H. Pascard, Nature 372, 761 (1994).

    Google Scholar 

  15. M. Ata, A. J. Hudson, K. Yamamura, and K. Kurihara, J. Appl. Phys. 34, 4207 (1996).

    Google Scholar 

  16. W. K. Maser, P. Bernier, J. M. Lambert, O. Stephen, P. M. Ajayan, C. Colliex, V. Brotons, J. M. Planeix, B. Coq, P. Molinie, and S. Lefrant, Synth. Met. 81, 243 (1996).

    Google Scholar 

  17. Y. Saito, K. Kawabata, and M. Okuda, J. Phys. Chem. 99, 16706 (1995).

    Google Scholar 

  18. S. Subramoney, R. S. Ruoff, D. C. Lorents, and R. Malhotra, Nature 366, 637 (1993).

    Google Scholar 

  19. E. G. Gillan, C. Yeretzian, K. S. Min, M. M. Alvarez, R. L. Whetten, and R. B. Kaner, J. Phys. Chem. 96, 6869 (1992).

    Google Scholar 

  20. P. Kuran, L. Dunsch, M. Krause, and A. Bartl, Molecular Nanostructures, eds. H. Kuzmany, J. Fink, M. Mehring, and S. Roth, World Scientific, Singapore, 198 (1997).

    Google Scholar 

  21. R. Huang, W. Lu, and S. Yang, J. Chem. Phys. 102, 189 (1995).

    Google Scholar 

  22. S. Lebedkin, B. Benker, R. Heid, H. Schober, and H. Rietschel, Appl. Phys. A. 66, 273 (1998).

    Google Scholar 

  23. T. Schwieger, H. Peisert, M. Knupfer, M. S. Golden, J. Fink, T. Pichler, H. Kato, and H. Shinohara, Molecular Nanostructures, eds. H. Kuzmany, J. Fink, M. Mehring, and S. Roth, AIP Conf. Proc. 544, 142 (2000).

    Google Scholar 

  24. H. Funasaka, K. Sygiyama, K. Yamamoto, and T. Takahashi, J. Phys. Chem. 99, 1826 (1995).

    Google Scholar 

  25. D. V. Afanas'ev, I. D. Blinov, A. A. Bogdanov, G. A. Dyuzhev, V. I. Karataev, A. A. Kruglikov, Mol. Mat. 5, 105 (1994).

    Google Scholar 

  26. T. Beltz, R. Schlo¨ gel, Intern. Winterscool on Electronic Prop. of Novel Mat., Kirchberg, Austria, 1995, p. 23.

  27. S. Akita, H. Ashihara, and Y. Nakayama, Jpn. J. Phys. 39, 4939 (2000).

    Google Scholar 

  28. H. Lange, P. Baranowski, A. Huczko, and P. Byszewski, Rev. Sci. Instrum. 68, 3723 (1997).

    Google Scholar 

  29. H. Lange, Full Sci. Techn. 5, 1177 (1997).

    Google Scholar 

  30. H. Lange, K. Saidane, M. Razafinimanana, and A. Gleizes, J. Phys. D: Appl. Phys. 32, 1024 (1999).

    Google Scholar 

  31. K. Sa?¨dane, Doctoral Thesis, Universite´ Paul Sabatier no3454, Toulouse, France (1999).

  32. S. Leach, M. Vervloet, A. Despres, E. Breherd, J. P. Hare, R. Taylor, and D. R. M. Walton, Chem. Phys. 160, 451 (1992).

    Google Scholar 

  33. A. Zettl and J. Cumings, Molecular Nanostructures, eds. H. Kuzmany, J. Fink, M. Mehring, and S. Roth, AIP Conf. Proc. 544, 526 (2000).

  34. R. L. Vander Wal, T. M. Ticich, and V. E. Curtis, J. Phys. Chem. B. 104, 11606 (2000).

    Google Scholar 

  35. A. Huczko, Fullerenes (in Polish), PWN, Warsaw, 2000, p. 102.

    Google Scholar 

  36. Y. Saito, Carbon 33, 979 (1995).

    Google Scholar 

  37. P. M. Ajayan, J. M. Nugent, R. W. Siegel, B. Wei, and Ph. Kohler-Redlich, Nature 406, 243 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lange, H., Huczko, A., Sioda, M. et al. Influence of Gadolinium on Carbon Arc Plasma and Formation of Fullerenes and Nanotubes. Plasma Chemistry and Plasma Processing 22, 523–536 (2002). https://doi.org/10.1023/A:1021367429047

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021367429047

Navigation