Skip to main content
Log in

Growth of Crystalline Quality SiC on Thin and Thick Silicon-on-Insulator Structures

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We have grown silicon carbide (SiC) on ultrathin Si (about 300Å) and on thick Si (about 2000Å) on commercial SIMOX (from IBIS Corp and SOITEC, Inc.), and bulk Si. Electron diffraction and Rutherford backscattering spectroscopy (RBS)/channeling studies indicate epitaxial growth of single-crystal β-SiC even at growth temperatures as low as 1100°C.

We have already demonstrated the fabrication of ultrathin Si, as thin as 140Å on SiO2 by using the low-energy SIMOX (LES) (20 to 30 keV) process to produce films of lower cost and excellent integrity compared to thinned commercial SIMOX. Based on these results, ultrathin Si-on-insulator (SOI) substrates appear to have great potential for device quality SiC films. However, the carbonization and/or growth of SiC on ultrathin Si requires further optimization because the processes for surface cleaning and growth of SiC on bulk Si substrates cannot be applied because of the thinness of the substrate layers. Additional carbonization work at higher temperatures has indicated the possibility of converting the entire Si top layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.G. Levi, “GaN Laser Diode Brightness Hopes for a Long Lived Short-Wavelength Device,” Physics Today, April 1996.

    Google Scholar 

  2. S. Nishino, J.A. Powell, and H.A. Will, Appl. Phys. Lett. 42, 460 (1983).

    Article  CAS  Google Scholar 

  3. P. Liaw, and R.F. Davis, J. Electrochem. Soc. 132, 642 (1985).

    Article  CAS  Google Scholar 

  4. S. Nishino, H. Suhara, H. Ono, and H. Matsunami, J. Appl. Phys. 61, 4889 (1987).

    Article  CAS  Google Scholar 

  5. J.A. Powell, L.G. Matus, M.A. Kuczmarski, J. Electrochemical Soc: Solid State Science and Technology, 1558 (1987).

    Google Scholar 

  6. M.K. ElGhor, S.J. Pennycook, F. Namavar, and H.K. Karam, Appl. Phys. Lett, 57 156 (1990).

    Article  CAS  Google Scholar 

  7. F. Namavar, E. Cortesi, D.L. Perry, E.A. Johnson, N.M. Kalkhoran, J.M. Manke, N.H. Karam, R.F. Pinizzotto, and H. Yang, MRS Symp. Proc., 198, 503 (1990).

    Article  CAS  Google Scholar 

  8. A.R. Powell, S.S. Iyer, and F.K. LeGoues, Appl. Phys. Lett. 64, 1856 (1994).

    Article  CAS  Google Scholar 

  9. L. Luo, M. Nastasi, C.J. Maggiore, R.F. Pinizzotto, H. Yang, and F. Namavar, J. Appl. Phys. 73, 4107 (1993).

    Article  CAS  Google Scholar 

  10. S.J. Pearton, S.M. Vernon, K.T. Short, J.M. Brown, C.R. Abernathy, R. Caruso, S.N.G. Chu, V.E. Haven, and S.N. Bunker, “Characterization of GaAs Grown by MOCVD on Si-on-Insulator,” Appl. Phys. Lett. 51, 1188 (1987).

    Article  CAS  Google Scholar 

  11. F. Namavar, E. Cortesi, B. Buchanan, and P. Sioshansi, 1989 IEEE SOS/SOI Technology Conference Proceedings, 117 (1989).

    Google Scholar 

  12. F. Namavar, E. Cortesi, N.M. Kalkhoran, J.M. Manke, and B. Buchanan, 1990 IEEE SOS/ SOI Technology Conference Proceedings, 49 (1990).

    Book  Google Scholar 

  13. F. Namavar, “Silicon-on-insulator (SOI) Technical Development,” Final Report #RL-TR-91-175, Rome Laboratory, Griffiss Air Force Base, August (1991).

    Google Scholar 

  14. F. Namavar, E. Cortesi, B. Buchanan, J.M. Manke, and N.M. Kalkhoran, MRS Symp. Proc. 235, 109 (1992).

    Article  CAS  Google Scholar 

  15. D.J. Larkin, P.G. Neudeck, J.A. Powell, and L.G. Matus, “Site-Competition Epitaxy for Controlled Doping of CVD Silicon Carbide,” International Conference on Silicon Carbide and Related Materials, Washington, DC, (November 1993).

    Google Scholar 

  16. D.L. Larkin, P.G. Neudeck, J.A. Powell, and L.G. Matus, Appl. Phys. Lett. 65, 1659 (1994).

    Article  CAS  Google Scholar 

  17. Kimoto, Hironori Nishino, Woo Sik Yoo, and Hiroyuki Matsunami “Growth Mechanisms of 6-HSiC in Step-Controlled Epitaxy,” J. Appl. Phys. 73, 726 (1993).

    Article  CAS  Google Scholar 

  18. A.J. Steckl, C. Yuan, J.P. Li, and M.J. Loboda, “Growth of Crystalline 3C-SiC on Si at Reduced Temperatures by Chemical Vapor Deposition from Silacyclobutane,”. Appl. Phy. Lett. 63, 3347 (1993).

    Article  CAS  Google Scholar 

  19. Chien-Hung Wu, Chacko Jacob, X.J. Ning, S. Nishino, and P. Pirouz, J. Crystal Growth, 158, 480–490, (1996).

    Article  CAS  Google Scholar 

  20. Chacko Jacob, Chien-Hung Wu, Mehran Mehregany, P. Pirouz, To be presented and High Temp. Electronics Conference, Albuquerque, NM, June 1996.

    Google Scholar 

  21. J.P. Li and A.J. Steckl, J. Electrochem Soc. 142, 634, 1995.

    Article  CAS  Google Scholar 

  22. Christian A. Zorman, et al. J. Appl. Phys. 78(8) 15, 1995.

    Article  Google Scholar 

  23. T. Hirano, T. Furuhata, K.J. Gabriel, H. Fujita, in Technical Digest, 6th Conf. Solid-State Sensors and Actuators (San Francisco, June 1991) 873.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Namavar, F., Colter, P., Cremins-Costa, A. et al. Growth of Crystalline Quality SiC on Thin and Thick Silicon-on-Insulator Structures. MRS Online Proceedings Library 423, 409–414 (1996). https://doi.org/10.1557/PROC-423-409

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-423-409

Navigation