Skip to main content
Log in

Experimental investigation into tungsten carbide thin films as solid oxide fuel cell anodes

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Refractory carbides possess metal-like electronic and catalytic properties, which make them interesting candidates for anodes in solid oxide fuel cells. However, significant challenges include phase instability due to electrochemical potential gradient driven oxidation. This requires an understanding of both the chemical thermodynamics in operating environments along with direct measurement of the catalytic activity in fuel mixtures. Here, we present an experimental study on nanostructured WC as an anode for solid oxide fuel cells operating at 300–500 °C. This is enabled by combining calculated thermochemical equilibria validated against experiments at the material level and in fuel cell devices combined with flow reactor studies on fuel-selective catalytic activity directly at working anode interfaces. With an optimized anode microstructure and hydrogen–methane fuel mixtures, WC anode-based solid oxide fuel cells are shown to achieve a near-ideal open circuit voltage of 1.1 V at 500 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. A. Weber and E. Ivers-Tiffee: Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications. J. Power Sources 127, 273–283 (2004).

    Article  CAS  Google Scholar 

  2. K. Kerman, B.K. Lai, and S. Ramanathan: Pt/Y0.16Zr0.84O1.92/Pt thin film solid oxide fuel cells: Electrode microstructure and stability considerations. J. Power Sources 196, 2608–2614 (2011).

    Article  CAS  Google Scholar 

  3. H. Galinski, T. Ryll, P. Elser, J.L.M. Rupp, A. Bieberle-Hutter, and L.J. Gauckler: Agglomeration of Pt thin films on dielectric substrates. Phys. Rev. B: Condens. Matter Mater. Phys. 82, 235415 (2010).

    Article  Google Scholar 

  4. T. Ryll, H. Galinski, L. Schlagenhauf, P. Elser, J.L.M. Rupp, A. Bieberle-Hutter, and L.J. Gauckler: Microscopic, and nanoscopic three-phase-boundaries of platinum thin-film electrodes on YSZ electrolyte. Adv. Funct. Mater. 21, 565–572 (2011).

    Article  CAS  Google Scholar 

  5. H.J. Goldschmidt: Interstitial Alloys (Butterworth, London, 1967).

    Book  Google Scholar 

  6. E.K. Storms: The Refractory Carbides (Academic, New York, 1967).

    Google Scholar 

  7. L.E. Toth: Transition Metal Carbides, and Nitrides (Academic, New York, 1971).

    Google Scholar 

  8. H.O. Pierson: Handbook of Chemical Vapor Deposition (CVD): Principles, Technology, and Applications (William Andrew Inc., New York, 1992).

    Google Scholar 

  9. C. Kittel: Introduction to Solid State Physics, 7th ed. (Wiley-India, New Delhi, 1995).

    Google Scholar 

  10. R.B. Levy and M. Boudart: Platinum-like behavior of tungsten carbide in surface catalysis. Science 181, 547–549 (1973).

    Article  CAS  Google Scholar 

  11. L.H. Bennett, J.R. Cuthill, A.J. Mcaliste, N.E. Erickson, and R.E. Watson: Electronic-structure and catalytic behavior of tungsten carbide. Science, 184, 563–565 (1974).

    Article  CAS  Google Scholar 

  12. J.E. Houston, G.E. Laramore, and R.L. Park: Surface electronic properties of tungsten, tungsten carbide, and platinum. Science 185, 258–260 (1974).

    Article  CAS  Google Scholar 

  13. R.J. Colton, J.T.J. Huang, and J.W. Rabalais: Electronic-structure of tungsten carbide and its catalytic behavior. Chem. Phys. Lett. 34, 337–339 (1975).

    Article  CAS  Google Scholar 

  14. B. Fruhberger and J.G. Chen: Reaction of ethylene with clean and carbide-modified Mo(110): Converting surface reactivities of molybdenum to Pt-group metals. J. Am. Chem. Soc. 118, 11599–11609 (1996).

    Article  Google Scholar 

  15. H.H. Hwu and J.G. Chen: Surface chemistry of transition metal carbides. Chem. Rev. 105, 185–212 (2005).

    Article  CAS  Google Scholar 

  16. P.N. Ross and P. Stonehart: Relation of surface-structure to electrocatalytic activity of tungsten carbide. J. Catal. 48, 42–59 (1977).

    Article  CAS  Google Scholar 

  17. G.T. Burstein, D.R. McIntyre, and A. Vossen: Relative activity of a base catalyst toward electro-oxidation of hydrogen and methanol. Electrochem. Solid-State Lett. 5, A80–A83 (2002).

    Article  CAS  Google Scholar 

  18. X.G. Yang and C.Y. Wang: Nanostructured tungsten carbide catalysts for polymer electrolyte fuel cells. Appl. Phys. Lett. 86, 224104 (2005).

    Article  Google Scholar 

  19. R. Ganesan and J.S. Lee: Tungsten carbide microspheres as a noble-metal-economic electrocatalyst for methanol oxidation. Angew. Chem., Int. Ed. 44, 6557–6560 (2005).

    Article  CAS  Google Scholar 

  20. A. Torabi, T.H. Etsell, N. Semagina, and P. Sarkar: Electrochemical behaviour of tungsten carbide-based materials as candidate anodes for solid oxide fuel cells. Electrochim. Acta 67, 172–180 (2012).

    Article  CAS  Google Scholar 

  21. A. Torabi and T.H. Etsell: Tungsten carbide-based anodes for solid oxide fuel cells: Preparation, performance and challenges. J. Power Sources 212, 47–56 (2012).

    Article  CAS  Google Scholar 

  22. A. Torabi and T.H. Etsell: Ni modified WC-based anode materials for direct methane solid oxide fuel cells. J. Electrochem. Soc. 159, B714–B722 (2012).

    Article  CAS  Google Scholar 

  23. A.S. Kurlov and A.I. Gusev: Tungsten carbides and W–C phase diagram. Inorg. Mater. 42, 121–127 (2006).

    Article  CAS  Google Scholar 

  24. A.E. Newkirk: The oxidation of tungsten carbide. J. Am. Chem. Soc. 77, 4521–4522 (1955).

    Article  CAS  Google Scholar 

  25. A. Warren, A. Nylund, and I. Olefjord: Oxidation of tungsten and tungsten carbide in dry and humid atmospheres. Int. J. Refract. Met. Hard Mater. 14, 345–353 (1996).

    Article  CAS  Google Scholar 

  26. J. Brillo, H. Kuhlenbeck, and H.J. Freund: Interaction of O2 with WC(0001). Surf. Sci. 409, 199–206 (1998).

    Article  CAS  Google Scholar 

  27. K.M. Andersson and L. Bergstrom: Oxidation and dissolution of tungsten carbide powder in water. Int. J. Refract. Met. Hard Mater. 18, 121–129 (2000).

    Article  CAS  Google Scholar 

  28. A.M. Hussain, B.R. Sudireddy, J.V.T. Hogh, and N. Bonanos: A preliminary study on WO3-infiltrated W–Cu–ScYSZ anodes for low temperature solid oxide fuel cells. Fuel Cells 12, 530–536 (2012).

    Article  Google Scholar 

  29. H. Xiong, B.K. Lai, A.C. Johnson, and S. Ramanathan: Low-temperature electrochemical characterization of dense ultra-thin lanthanum strontium cobalt ferrite (La0.6Sr0.4Co0.8Fe0.2O3) cathodes synthesized by RF-sputtering on nanoporous alumina-supported Y-doped zirconia membranes. J. Power Sources 193, 589–592 (2009).

    Article  CAS  Google Scholar 

  30. R. O’Hayre, S.W. Cha, W. Colella, and F.B. Prinz: Fuel Cell Fundamentals, 2nd ed. (Wiley, New York, 2009).

    Google Scholar 

  31. K.L. Hakansson, H.I.P. Johansson, and L.I. Johansson: High-resolution core-level study of hexagonal Wc(0001). Phys. Rev. B: Condens. Matter Mater. Phys. 49, 2035–2039 (1994).

    Article  CAS  Google Scholar 

  32. T.H. Fleisch and G.J. Mains: An XPS study of the UV reduction and photochromism of MoO3 and WO3. J. Chem. Phys. 76, 780–786 (1982).

    Article  CAS  Google Scholar 

  33. P.G. Gassman, D.W. Macomber, and S.M. Willging: Isolation and characterization of reactive intermediates and active catalysts in homogeneous catalysis. J. Am. Chem. Soc. 107, 2380–2388 (1985).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Financial support from ARPA-E (DE–AR0000491) is acknowledged. We thank Neil Simrick and Zhuhua Cai for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Jiang.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Guan, X., Lattimer, J. et al. Experimental investigation into tungsten carbide thin films as solid oxide fuel cell anodes. Journal of Materials Research 31, 3050–3059 (2016). https://doi.org/10.1557/jmr.2016.312

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.312

Navigation