Skip to main content
Log in

Thermodynamic assessment of the MgO–Al2O3–SiO2 system

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Thermodynamic properties of the phases in the MgO–Al2O3–SiO2 system were assessed, resulting in a set of self-consistent thermodynamic data. The two ternary compounds, cordierite and sapphirine, were optimized from subsolidus reactions. The liquid phase was described by the ionic two-sublattice model with a new species AlO2−1, yielding the formula (Al+3,Mg+2)P(AlO2−1,O−2,SiO4−4,SiO20)Q. Projection of the liquidus surface was calculated. Various isothermal and isoplethal sections were compared with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Saunders and A.P. Miodownik: CALPHAD (Calculation of the Phase Diagram): A Comprehensive Guide (Elsevier Science, Oxford, U.K. 1998).

    Google Scholar 

  2. M. Hillert, B. Jansson, B. Sundman, and J. Ågren: A twosublattice model for molten solutions with different tendency for ionization. Metall. Trans. 16A, 261 (1985).

    Article  CAS  Google Scholar 

  3. B. Sundman: Modification of the two-sublattice model for liquids. CALPHAD 15, 109 (1991).

    Article  CAS  Google Scholar 

  4. X. Wang, M. Hillert, and B. Sundman: A Thermodynamic Evaluation of the CaO–Al2O3–SiO2System. (TRITA-MAC-407, KTH, Stockholm, Sweden, 1989).

    Google Scholar 

  5. O. Fabrichnaya, H.J. Seifert, R. Weiland, T. Ludwig, F. Aldinger, and A. Navrotsky: Phase equilibria and thermodynamics in the Y2O3–Al2O3–SO2-system. Z. Metallkd. 92, 1083 (2001).

    CAS  Google Scholar 

  6. H.H. Mao, M. Hillert, M. Selleby, and B. Sundman: Thermodynamic assessment of the CaO–Al2O3–SiO2 system (unpublished).

  7. B.O. Mysen: Structure and Properties of Silicate Melts. (Elsevier, Amsterdam, The Netherlands, 1988).

    Google Scholar 

  8. G. Gutierrez, A.B. Belonoshko, R. Ahuja, and B. Johansson: Structure properties of liquid Al2O3: A molecular dynamics study. Phys. Rev. E 61, 2723 (2000).

    Article  CAS  Google Scholar 

  9. M. Benoit and S. Ispas: Structural properties of molten silicates from ab initio molecular-dynamics simulations: Comparison between CaO–Al2O3–SiO2 and SiO2. Phys. Rev. B 64, 224205 (2001).

    Article  CAS  Google Scholar 

  10. G. Gruener, P. Odier, D.D. Meneses, P. Florian and P. Richet: Bulk and local dynamics in glass-forming liquids: A viscosity, electrical conductivity, and NMR study of aluminosilicate melts. Phys. Rev. B 64, Art. 024206 (2001).

  11. D.K. Belashchenko and L.V. Skvortsov: Molecular dynamics study of CaO–Al2O3 melts. Inorg. Mater. 37, 476 (2001).

    Article  CAS  Google Scholar 

  12. J.K.R. Weber, S. Krishnan, S. Ansell, A.D. Hixson, and P.C. Nordine: Structure of liquid Y3Al5O12 (YAG). Phys. Rev. Lett. 84, 3622 (2000).

    Article  CAS  Google Scholar 

  13. M.C. Wilding, P.F. McMillan, and A. Navrotsky: Thermodynamic and structural aspects of the polyamorphic transition in yttrium and other rare-earth aluminate liquids. Physica A 314, 379 (2002).

    Article  CAS  Google Scholar 

  14. H.H. Mao, M. Selleby, and B. Sundman: Phase equilibria and thermodynamics in the Al2O3-SiO2 system–Modelling of mullite and liquid. J. Am. Ceram. Soc. (2005) (accepted).

    Google Scholar 

  15. H.H. Mao, M. Selleby, and B. Sundman: A reevalution of the liquid phase in the CaO–Al2O3 and MgO–Al2O3 system. CALPHAD 28, 307 (2004).

    Article  CAS  Google Scholar 

  16. W. Huang, M. Hillert, and X. Wang: Thermodynamic assessment of the CaO–MgO–SiO2 system. Metall. Mater. Trans. 26A, 2293 (1995).

    Article  CAS  Google Scholar 

  17. A.D. Pelton and M. Blander: Thermodynamic analysis of ordered liquid solutions by a modified quasi-chemical approach— Application to silicate slag. Metall. Trans. B 17, 805 (1986).

    Article  Google Scholar 

  18. M.L. Kapoor and G.M. Frohberg: Cellular model for liquid phase, in Proc. Symp. Chemical Metallurgy of Iron and Steel, edited by M.L. Kapoor, M.G. Frohberg, and O. Kubaschewsk: (Sheffield, U.K., 1971).

    Google Scholar 

  19. H. Gaye and J. Welfringer: Modelling of the thermodynamic properties of complex metallurgical slags. In Proc. 2nd Int. Symp. Metall. Slags and Fluxes, edited by H.A. Fine and D.R. Gaskell (TMS-AIME, Warrendale, PA, 1984, 357–75. Publ. Metall. Soc. AIME., New York, NY, 1984).

    Google Scholar 

  20. J.M. Larrain and H.H. Kellogg: Use of chemical species for correlation of solution properties, in Calculation of Phase Diagrams and Thermochemistry of Alloy Phases, edited by Y.A. Chaug and J.J. Smith. (Metall. Soc. AIME, Warrendale, PA, 1979).

    Google Scholar 

  21. J.W. Hastie, W.S. Horton, E.R. Plante, and D.W. Bonnell: Thermodynamic models of alkali vapor transport in silicate systems. High Temp. High Press. 14, 669 (1982).

    CAS  Google Scholar 

  22. B. Björkman: An assessment of the system Fe–O–SiO2 using a structure based model for the liquid silicate. CALPHAD 9, 271 (1985).

    Article  Google Scholar 

  23. M. Hoch: Application of the Hoch–Arpshofen model to the SiO2–CaO–MgO–Al2O3 system. CALPHAD 12, 45 (1988).

    Article  CAS  Google Scholar 

  24. R.G. Berman and T.H. Brown: A thermodynamic model for multicomponent melts, with application to the system CaO–Al2O3–SiO2. Geochim. Cosmochim. Acta 48, 661 (1984).

    Article  CAS  Google Scholar 

  25. I.H. Jung, S.A. Decterov, and A.D. Pelton: Critical thermodynamic evaluation and optimization of the MgO–Al2O3, CaO–MgO–Al2O3, and MgO–Al2O3–SiO2 systems. J. Phas. Equ. Diff. 25, 329 (2004).

    Article  CAS  Google Scholar 

  26. O. Fabrichnaya, A. Costa e Silva, and F. Aldinger: Assessment of thermodynamic functions in the MgO–Al2O3–SiO2 system. Z. Metallkd. 95, 793 (2004).

    Article  CAS  Google Scholar 

  27. W. Schreyer and J.F. Schairer: Compositions and structural states of anhydrous Mg-cordierites: A re-investigation of the central part of the system MgO–Al2O3–SiO2. J. Petrol. 2, 324 (1961).

    Article  CAS  Google Scholar 

  28. P.B. Moore: Crystal structure of sapphirine. Nature 218, 81 (1968).

    Article  CAS  Google Scholar 

  29. H.J. Kuzel: Chemical formula and compostion of sapphirin. Neues. Jahrb. Mineral. Monatsh. 68 (1961).

    Google Scholar 

  30. R.M. Smart and F.P. Glasser: The subsolidus phase equilibria and melting temperature of MgO–Al2O3–SiO2 compositions. Ceram. Int. 7, 90 (1981).

    Article  CAS  Google Scholar 

  31. M. Hillert: The compound energy formalism. J. Alloys Compd. 320, 161 (2001).

    Article  CAS  Google Scholar 

  32. K. Frisk and M. Selleby: The compound energy formalism: Applications. J. Alloys Compd. 320, 177 (2001).

    Article  CAS  Google Scholar 

  33. O. Fabrichnaya, S.K. Saxena, P. Richet, and E.F. Westrum: Thermodynamic Data, Models and Phase Diagram in Multicomponent Oxide System (Springer, Berlin, Heidelberg, New York, NY, 2004), p. 198.

    Book  Google Scholar 

  34. K. Onuma and M. Arima: The join MgSiO3–MgAl2SiO6 and the solubility of Al2O3 in enstatite at atmospheric pressure. J. Jpn. Assoc. Min. Petr. Econ. Geol. 70, 53 (1975).

    Article  CAS  Google Scholar 

  35. G.A. Rankin and H.E. Merwin: The ternary system MgO–Al2O3–SiO2. Am. J. Sci. 45, 301 (1918).

    Article  CAS  Google Scholar 

  36. W.R. Foster: Synthetic sapphirine and its stability field in the system MgO–Al2O3–SiO2. J. Am. Ceram. Soc. 33, 73 (1950).

    Article  CAS  Google Scholar 

  37. M.L. Keith and J.F. Schairer: The stability field of sapphirine in the system MgO–Al2O3–SiO2. J. Geol. 60, 181 (1952).

    Article  CAS  Google Scholar 

  38. S. Aramaki and R. Roy: The mullite-corundum boundary in the systems MgO–Al2O3–SiO2 and CaO–Al2O3–SiO2. J. Am. Ceram. Soc. 42, 644 (1959).

    Article  CAS  Google Scholar 

  39. E.F. Osborn and A. Muan: Specific diagrams B. Metal oxide systems. Phase Diagrams for Ceramists, edited by E.M. Levin, C.R. Robbins, and H.F. McMurdie (Am. Ceram. Soc., Columbus, OH, 1964), Vol. 1, p. 264.

    Google Scholar 

  40. R.M. Smart and F.P. Glasser: Phase relations of cordierite and sapphirine in the system MgO–Al2O3–SiO2. J. Mater. Sci. 11, 1459 (1976).

    Article  CAS  Google Scholar 

  41. J.W. Greig: Immiscibility in silicate melts. Am. J. Sci. 13, 1 (1927).

    Article  CAS  Google Scholar 

  42. D. Henderson and J. Taylor: Thermodynamic properties in the CaO–MgO–SiO2 and MgO–Al2O3–SiO2 systems. J. Iron Steel Inst. 204, 41 (1966).

    CAS  Google Scholar 

  43. R.H. Rein and J. Chipman: Activities in the liquid solution SiO2–CaO–MgO–Al2O3 at 1600 °C. TMS-AIME 233, 415 (1965).

    CAS  Google Scholar 

  44. T.V. Charlu, R.C. Newton, and O.J. Kleppa: Enthalpies of formation at 970 K of compounds in system MgO–Al2O3–SiO2 from high-temperature solution calorimetry. Geochim. Cosmochim. Acta 39, 1487 (1975).

    Article  CAS  Google Scholar 

  45. B.N. Roy and A. Navrotsky: Thermochemistry of charge-coupled substitutions in silicate-glasses—The systems M1/nn+AlO2–SiO2 (M β Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Pb). J. Am. Ceram. Soc. 67, 606 (1984).

    Article  CAS  Google Scholar 

  46. R.A. Robie, B.S. Hemingway, and J.R. Fisher: Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures. US Geol. Surv. Bul. 1452, 456 (1978).

    Google Scholar 

  47. I.A. Kiseleva: High-temperature heat-capacity of sapphirine. Geochem. Int. 113 (1976).

    Google Scholar 

  48. J-O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman: Thermo-Calc & DICTRA, computational tools for materials science. CALPHAD 26, 273 (2002).

    Article  CAS  Google Scholar 

  49. S.K. Saxena, N. Chatterjee, Y. Fei, and G. Shen: Termodynamic Data on Oxides and Silicates (Springer Verlag, New York, 1993).

    Book  Google Scholar 

  50. M. Gottschalk: Internally consistent thermodynamic data for rock-forming minerals in the system SiO2–TiO2–Al2O3–Fe2O3–CaO–MgO–FeO–K2O–Na2O–H2O–CO2. Eur. J. Miner. 9, 175 (1997).

    Article  CAS  Google Scholar 

  51. K. Morita, K. Kume, and N. Sano: A newly developed method for determining SiO2 activity of the silicate slags equilibrated with molten silicon alloys. ISIJ Int. 40, 554 (2000).

    Article  CAS  Google Scholar 

  52. K. Kume, K. Morita, T. Miki, and N. Sano: Activity measurement of CaO–SiO2–AlO1.5–MgO slags equilibrated with molten silicon alloys. ISIJ Int. 40, 561 (2000).

    Article  CAS  Google Scholar 

  53. B. Dhima, B. Stafa, and M. Allibert: Activity measurements in steel-making-related oxide melts by differential mass spectrometry. High Temp. Sci. 21, 143 (1986).

    CAS  Google Scholar 

  54. J. Björkvall and V.L. Stolyarova: A mass spectrometric study of Al2O3–SiO2 melts using a Knudsen cell. Rapid Commun. Mass Spectrom. 15, 836 (2001).

    Article  Google Scholar 

  55. V.L. Stolyarova: A mass spectrometric study of the thermodynamic properties of oxide melts. Glass Phys. Chem. 27, 3 (2001).

    Article  CAS  Google Scholar 

  56. S. Kambayashi and E. Kato: A thermodynamic study of (magnesium- oxide + silicon dioxide) by mass-spectrometry at 1973 K. J. Chem. Thermodynam. 16, 241 (1984).

    Article  CAS  Google Scholar 

  57. S. Kambayashi and E. Kato: A thermodynamic study of (magnesium-oxide + silicon dioxide) by mass-spectrometry. J. Chem. Thermodynam. 15, 701 (1983).

    Article  CAS  Google Scholar 

  58. Y.H. Zhang and A. Navrotsky: Thermochemistry of glasses in the Y2O3–Al2O3–SiO2 system. J. Am. Ceram. Soc. 86, 1727 (2003).

    Article  CAS  Google Scholar 

  59. Y.H. Zhang and A. Navrotsky: Thermochemistry of rare-earth aluminate and aluminosilicate glasses. J. Non-Cryst. Solids 341, 141 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huahai Mao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, H., Fabrichnaya, O., Selleby, M. et al. Thermodynamic assessment of the MgO–Al2O3–SiO2 system. Journal of Materials Research 20, 975–986 (2005). https://doi.org/10.1557/JMR.2005.0123

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0123

Navigation