Skip to main content
Log in

A Mass Spectrometric Study of the Thermodynamic Properties of Oxide Melts

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Information about vaporization processes and the thermodynamic properties of oxide melts is of importance for various fields of high-temperature technologies. The available data on the thermodynamic properties of binary borate, silicate, germanate, and phosphate melts studied by mass spectrometry have been compared in the framework of the acid–base concept. The reliability of experimental data is analyzed on the basis of a comparison between the results obtained by different mass spectrometric techniques and those determined by various methods of high-temperature chemistry, such as the electromotive force (emf) technique, high-temperature dissolution calorimetry, and the method of exchange equilibria in slags. Deviations of the chemical potentials for P2O5, B2O3, SiO2, and GeO2 from the ideal behavior as a function of the oxide modifier content in series of binary systems reflect the diversity of processes (dissociation, association, and polymerization) accompanying the vaporization of their components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Stolyarova, V.L. and Semenov, G.A., Mass Spectrometric Study of the Vaporization of Oxide Systems, Chichester: Wiley, 1994.

    Google Scholar 

  2. Asano, M., Kubo, K., and Nakagawa, H., Determination of Heats of Formation for Solid and Liquid Lithium Metasilicates by Vaporization Method, J. Nucl. Sci. Technol., 1983, vol. 20, no. 12, pp. 1051-1053.

    Google Scholar 

  3. Nakagawa, H., Asano, M., and Kubo, K., Mass Spectrometric Study of the Vaporization of Lithium Metasilicate, J. Nucl. Mater., 1981, vol. 102, no. 3, pp. 292-297.

    Google Scholar 

  4. Piacente, V. and Matousek, J., Mass Spectrometric Determination of Sodium Partial Pressures over the System N2O · 2SiO2, Silicaty, 1973, no. 4, pp. 269-281.

  5. Altemose, V.O. and Tong, S.S.C., Evaporation from Binary Glasses by High Temperature Mass Spectrometry, J. Non-Cryst. Solids, 1980, vols. 38-39, pp. 587-592.

    Google Scholar 

  6. Argent, B.B., Jones, K., and Kirkbride, B.J., Vapours in Equilibrium with Glass Melts, in The Industrial Use of Thermochemical Data, Special Publication no. 34, Barry, T.I., Ed., London, 1980, pp. 379-390.

  7. Piacente, V. and Matousek, J., Alkali Vapor Pressures over Some Simple Silicate Melts, Collect. Czech. Chem. Commun., 1983, vol. 48, no. 6, pp. 1528-1531.

    Google Scholar 

  8. Shultz, M.M., Stolyarova, V.L., and Ivanov, G.G., A Mass Spectrometric Study of Thermodynamic Properties of Glasses and Melts in the Na2O-SiO2 System, Fiz. Khim. Stekla, 1987, vol. 13, no. 2, pp. 168-172.

    Google Scholar 

  9. Vovk, O.M., Rudnyi, E.B., Sidorov, L.N., Stolyarova, V.L., Shakhmatkin, B.A., and Rakhimov, V.I., Determination of Thermodynamic Properties in the Sodium Silicate System by Ion-Molecule Equilibrium Method, Fiz. Khim. Stekla, 1988, vol. 14, no. 2, pp. 218-225.

    Google Scholar 

  10. Plante, E.R., Vapor Pressure Measurements of Potassium over K2O-SiO2 Solutions by a Knudsen Effusion Mass Spectrometric Method, in NBS Special Publication 561/1: Characterization of High Temperature Vapors and Gases, Washington, 1979, vol. 1, pp. 265-281.

    Google Scholar 

  11. Grossman, L.N., Interactions in the System Cs(g, l)-SiO2-Al2O3, Rev. Int. Hautes Temp. Refract., 1979, vol. 16, no. 3, pp. 255-261.

    Google Scholar 

  12. Kato, E. and Kambayashi, S., Mass Spectrometric Determination of Activities in the MgO-SiO2 System, Advances in the Science of Iron and Steelmaking, Japan-United States Seminar, Kyoto, 1983, pp. 49-57.

  13. Kambayashi, S. and Kato, E., A Thermodynamic Study of (Magnesium Oxide-Silicon Dioxide) by Mass Spectrometry, J. Chem. Thermodyn., 1983, vol. 15, no. 7, pp. 701-707.

    Google Scholar 

  14. Kambayashi, S. and Kato, E., A Thermodynamic Study of (Magnesium Oxide-Silicon Dioxide) by Mass Spectrometry at 1973 K, J. Chem. Thermodyn., 1984, vol. 16, no. 3, pp. 241-248.

    Google Scholar 

  15. Stolyarova, V.L., Shornikov, S.I., Ivanov, G.G., and Shultz, M.M., High Temperature Mass Spectrometric Study of Thermodynamic Properties of the CaO-SiO2 System, J. Electrochem. Soc., 1991, vol. 138, no. 12, pp. 3710-3714.

    Google Scholar 

  16. Semenov, G.A. and Petrova, M.A., Mass-Spectrometric Study of Stability of Gaseous Compounds of the “Double” Oxide Type, Tezisy dokl. soveshchaniya po problemam sovremennoi khimii koordinatsionnykh soedinenii (Abstracts of Papers, Conf. on Problems in Modern Chemistry of Coordination Compounds), Leningrad: Khimiya, 1966, p. 39.

    Google Scholar 

  17. Hilpert, K., Chemistry of Inorganic Vapors, Struct. Bonding (Berlin), 1990, vol. 73, pp. 1-198.

    Google Scholar 

  18. Shultz, M.M., Ivanov, G.G., Stolyarova, V.L., and Shakhmatkin, B.A., Thermodynamic Properties of Melts and Glasses in the B2O3-SiO2 System, Fiz. Khim. Stekla, 1986, vol. 12, no. 3, pp. 285-292.

    Google Scholar 

  19. Shultz, M.M., Ivanov, G.G., Stolyarova, V.L., and Shakhmatkin, B.A., Calculation of Thermodynamic Properties of Glass-forming Melts in the B2O3-SiO2 and B2O3-GeO2 Systems, Fiz. Khim. Stekla, 1986, vol. 12, no. 4, pp. 385-390.

    Google Scholar 

  20. Shultz, M.M., Stolyarova, V.L., and Ivanov, G.G., Thermodynamic Properties of Melts and Glasses in the GeO2-SiO2 System, Fiz. Khim. Stekla, 1987, vol. 13, no. 6, pp. 830-838.

    Google Scholar 

  21. Kato, E. and Ohuchi, J., Mass Spectrometric Determination of Activities in the Liquid PbO-SiO2 System, Chemical Metallurgy of Iron and Steel, Proc. Int. Symp. on Metallurgical Chemistry: Application in Ferrous Metallurgy, London, 1973, pp. 26-27.

  22. Stafa, B., Contribution a la mesure des activities dans le systeme MnO-SiO2-Al2O3 et au calcul des equilibres de desoxydation, Thèse, Inst. Nat. Polytechnique de Grenoble, Grenoble, 1983.

    Google Scholar 

  23. Dhima, A., Stafa, B., and Allibert, M., Activity Measurements in Steelmaking-Related Oxide Melts by Differential Mass Spectrometry, High Temp. Sci., 1986, vol. 21, no. 2, pp. 143-159.

    Google Scholar 

  24. Shultz, M.M., Stolyarova, V.L., Semenov, G.A., and Shakhmatkin, B.A., Thermodynamic Properties of Melts in the Na2O-GeO2 in the Temperature Range 1330-1540 K, Fiz. Khim. Stekla, 1979, vol. 5, no. 6, pp. 651-658.

    Google Scholar 

  25. Shultz, M.M., Stolyarova, V.L., and Semenov, G.A., A Mass-Spectrometric Study of Thermodynamic Properties of Melts in the Na2O-B2O3-GeO2 System, Izv. Akad. Nauk SSSR, Neorg. Mater., 1979, vol. 15, no. 6, pp. 1002-1007.

    Google Scholar 

  26. Shultz, M.M., Stolyarova, V.L., and Semenov, G.A., Mass Spectrometric Study of Thermodynamic Properties and Vaporization Processes in the Na2O-B2O3-GeO2 Glassforming Melts, J. Non-Cryst. Solids, 1980, vols. 38-39, pp. 581-586.

    Google Scholar 

  27. Shultz, M.M., Stolyarova, V.L., and Semenov, G.A., Thermodynamic Functions of Melts in the Na2O-B2O3-GeO2 System, Dokl. Akad. Nauk SSSR, 1979, vol. 246, no. 1, pp. 154-156.

    Google Scholar 

  28. Semenov, G.A., Thermodynamic Properties of Gaseous Barium Germanate BaGeO2 from the Data of High-Temperature Mass Spectrometry, Zh. Fiz. Khim., 1996, vol. 70, no. 6, pp. 997-998.

    Google Scholar 

  29. Stolyarova, V.L., Ambrok, A.G., Nikolaev, E.N., and Semenov, G.A., Mass-Spectrometric Determination of Evaporation Coefficients for Components of Melts in the B2O3-GeO2 System, Fiz. Khim. Stekla, 1977, vol. 3, no. 6, pp. 535-537.

    Google Scholar 

  30. Stolyarova, V.L., A Mass-Spectrometric Study of Vaporization Processes in Glass-forming Melts of the B2O3-GeO2 System, in Sovremennye problemy neorganicheskoi khimii (Modern Problems in Inorganic Chemistry), Available from ONII TEKhim, 1978, Cherkassy, no. 2215/78, pp. 88-92.

  31. Shultz, M.M., Stolyarova, V.L., and Semenov, G.A., A Mass-Spectrometric Study of Thermodynamic Properties of Melts in the GeO2-B2O3 System, Fiz. Khim. Stekla, 1978, vol. 4, no. 6, pp. 653-661.

    Google Scholar 

  32. Sharkan', I.P., Mikulaninets, S.V., Firtsak, Yu.Yu., Dovgoshei, N.I., Chepur, D.V., and Kutsenko, Ya.P., A Mass-Spectrometric Investigation into Vaporization Process in Glasses of the GeO2-Sb2O3 System, Fiz. Khim. Stekla, 1981, vol. 7, no. 3, pp. 380-382.

    Google Scholar 

  33. Nikolaev, E.N., Semenov, G.A., Frantseva, K.E., Sharov, S.N., and Yurkov, L.F., A Mass-Spectrometric Study of the Volatilization of Components in the Bi2O3-GeO2 Glass-Forming System, Fiz. Khim. Stekla, 1981, vol. 7, no. 5, pp. 606-611.

    Google Scholar 

  34. Shultz, M.M., Stolyarova, V.L., and Semenov, G.A., A Mass-Spectrometric Study of Thermodynamic Properties of Melts in the 2NaBO2-B2O3 System, Fiz. Khim. Stekla, 1979, vol. 5, no. 1, pp. 42-51.

    Google Scholar 

  35. Blackburn, P.E. and Buchler, A., The Thermodynamics of Vaporization in the Beryllium Oxide-Boron Oxide System, J. Phys. Chem., 1965, vol. 69, no. 12, pp. 4250-4255.

    Google Scholar 

  36. Gusarov, A.V., Determination of Stability of Gaseous Magnesium Metaborates, Teplofiz. Vys. Temp., 1970, vol. 8, no. 6, pp. 1186-1191.

    Google Scholar 

  37. Stolyarova, V.L., Shilov, A.L., and Seetharaman, S., Relative Volatility of Borate Glasses and Melts Studied by High Temperature Mass Spectrometry, Proc. Int. Congress on Glass, Beijing: Chinese Ceram. Soc., 1995, vol. 7, pp. 155-160.

    Google Scholar 

  38. Stolyarova, V.L. and Seetharaman, S., Vaporization Studies of Oxide Systems Using a QMS-420 Mass Spectrometer, Vacuum, 1998, vol. 49, no. 3, pp. 161-165.

    Google Scholar 

  39. Kou, T. and Asano, M., Mass Spectrometric Study of Vaporization in the SrO-B2O3 System, High Temp. Sci., 1987, vol. 24, no. 1, pp. 1-19.

    Google Scholar 

  40. Asano, M. and Kou, T., Thermochemical Properties of SrBO2 (g) and SrB2O4 (s), J. Chem. Thermodyn., 1988, vol. 20, no. 10, pp. 1149-1156.

    Google Scholar 

  41. Kou, T. and Asano, M., Enthalpy of Formation and Dissociation Energy for SrBO2 (g), Bull. Inst. At. Energy, Kyoto Univ., 1988, vol. 73, no. 3, p. 50.

    Google Scholar 

  42. Kou, T. and Asano, M., Vaporization in the SrO-B2O3 System, Bull. Inst. At. Energy, Kyoto Univ., 1988, vol. 73, no. 3, p. 49.

    Google Scholar 

  43. Asano, M. and Kou, T., Thermochemical Properties of SrSiO (g) and SrBO2 (g), J. Chem. Thermodyn., 1990, vol. 22, no. 12, pp. 1223-1230.

    Google Scholar 

  44. Il'in, M.K., Makarov, A.V., and Nikitin, O.T., Mass-Spectrometric Study of Vaporization Processes in Barium Metaborate, Vestn. Mosk. Univ., Ser. 2: Khim., 1974, no. 5, pp. 436-438.

  45. Asano, M. and Kou, T., Thermochemical Properties of BaBO2 (g) and Ba3B2O6 (s), J. Chem. Thermodyn., 1989, vol. 21, no. 8, pp. 837-845.

    Google Scholar 

  46. Asano, M. and Kou, T., Vaporization and Thermochemical Properties in the BaO-B2O3 System, High Temp. Sci., 1990, vol. 29, no. 3, pp. 171-187.

    Google Scholar 

  47. Stolyarova, V.L., Archakov, I.Yu., and Shultz, M.M., Mass Spectrometric Study of Vaporization Behaviour and Thermodynamic Properties of the BaO-B2O3 System, Proc. Sundaram Symp., Kalpakkam, India, 1991, pp. 429-431.

    Google Scholar 

  48. Semenikhin, V.I., Sorokin, I.D., Yurkov, L.F., and Sidorov, L.N., Mass-Spectrometric Thermodynamic Study of Melts in the PbO-ZnO-B2O3 System, Fiz. Khim. Stekla, 1987, vol. 13, no. 5, p. 672-676.

    Google Scholar 

  49. Semenikhin, V.I., Sorokin, I.D., Yurkov, L.F., and Sidorov, L.N., Molecular Composition of Vapor and Activities of Components in Melts of the PbO-B2O3 System, Fiz. Khim. Stekla, 1987, vol. 13, no. 4, pp. 542-547.

    Google Scholar 

  50. Minaeva, I.I., Karasev, N.M., Yurkov, L.F., Sharov, S.N., and Sidorov, L.N., Mass-Spectrometric Study of Bi2O3-B2O3 Glass-Forming System, Fiz. Khim. Stekla, 1981, vol. 7, no. 2, pp. 223-227.

    Google Scholar 

  51. Melheiros, L.F., Chatillon, C., and Allibert, M., Congruent Vaporization Calculations and Differential Mass-Spectrometric Measurements in the Study of Oxide Mixtures: the Na2O-P2O5 System, High Temp.-High Press., 1988, vol. 20, no. 4, pp. 361-378.

    Google Scholar 

  52. Semenov, G.A., Lopatin, S.I., Kozyukova, N.V., and Kuligina, L.A., Thermodynamics of Formation of the Gaseous Ternary Oxide Compounds of Alkaline-Earth Metals at High Temperatures, High Temp.-High Press., 1988, vol. 20, no. 6, pp. 637-641.

    Google Scholar 

  53. Lopatin, S.I. and Semenov, G.A., Mass Spectrometric Study of Thermal Dissociation of Alkaline-Earth Metal Monophosphates, Izv. Akad. Nauk SSSR, Neorgan. Mater., 1989, vol. 25, no. 4, pp. 645-650.

    Google Scholar 

  54. Lopatin, S.I., Vaporization in Phosphate Systems, Zh. Obshch. Khim., 1997, vol. 67, no. 2, pp. 193-211.

    Google Scholar 

  55. Shornikov, S.I., Shilov, A.L., and Shultz, M.M., A Mass-Spectrometric Study of Thermodynamic Properties of Melts in the ZnO-P2O5 System, Zh. Fiz. Khim., 1996, vol. 70, no. 3, pp. 485-491.

    Google Scholar 

  56. Shultz, M.M., Stolyarova, V.L., Shornikov, S.I., Ivanov, G.G., Bondar', I.A., and Mal'shikov, A.E., Mass-Spectrometric Study of Vaporization Processes and Thermodynamic Properties of the GeO2-P2O5 System, in Razrabotka, issledovanie i primenenie fosfatnykh materialov v stroitel'stve. Tr. Tsentral'nogo Issledovatel'skogo Inst. Stroitel'nykh Konstruktsii im. V.A. Kucherenko (Development, Study, and Application of Phosphate Materials in Building, Proc. Kucherenko Central Res. Inst. of Building Constructions), Moscow: TsNIISK, 1992, pp. 32-46.

    Google Scholar 

  57. Stolyarova, V.L., Shornikov, S.I., Ivanov, G.G., and Shultz, M.M., Mass Spectrometric Study of Vaporization Processes and Thermodynamic Properties in the GeO2-P2O5 System, Rapid Commun. Mass Spectrom., 1990, vol. 4, no. 12, pp. 510-512.

    Google Scholar 

  58. Kambayashi, S., Mass-Spectrometric Measurement of P2O5 Activity in PbO-P2O5 and FetO-P2O5 Slags, Tetsu to Hagane, J. Iron Steel Inst. Jpn., 1984, vol. 70, no. 12, p. 863.

    Google Scholar 

  59. Kambayashi, S., Awaka, H., and Kato, E., Mass-Spectrometric Determination of P2O5 in PbO-P2O5 and FetO-P2O5 Systems, Tetsu to Hagane, J. Iron Steel Inst. Jpn., 1985, vol. 71, no. 16, pp. 1911-1918.

    Google Scholar 

  60. Chatillon, C., Allibert, M., and Pattoret, A., Etude thermodinamique par spectrometrie de masse des alliages aliminium-silicium de 1000 à 1700 K, High Temp.-High Press., 1975, vol. 7, no. 5, pp. 583-594.

    Google Scholar 

  61. Shornikov, S.I., Stolyarova, V.L., and Shultz, M.M., High Temperature Mass Spectrometric Study of 3Al2O3 · 2SiO2, Rapid Commun. Mass Spectrom., 1994, vol. 8, no. 5, pp. 478-480.

    Google Scholar 

  62. Blackburn, P.E., Buchler, A., and Stauffer, J.L., Thermodynamics of Vaporization in the Aluminum Oxide-Boron Oxide System, J. Phys. Chem., 1966, vol. 70, no. 8, pp. 2469-2474.

    Google Scholar 

  63. Stolyarova, V.L., Shilov, A.L., Ivanov, G.G., Shultz, M.M., and Seetharaman, S., High Temperature Mass Spectrometric Study of the B2O3-Al2O3 System at 1248-1850 K, Rapid Commun. Mass Spectrom., 1995, vol. 9, no. 13, p. 1244-1251.

    Google Scholar 

  64. Lopatin, S.I. and Semenov, G.A., Vaporization Processes in Silicon and Germanium Diphosphates, Zh. Obshch. Khim., 1995, vol. 65, no. 7, pp. 1060-1064.

    Google Scholar 

  65. Preston, E. and Turner, W.E.S., Volatilization and Vapor Tension at High Temperatures of the Sodium Silicate-Silica Glasses, J. Soc. Glass Technol., 1932, vol. 16, no. 3, pp. 331-349.

    Google Scholar 

  66. Harrison, H.C., Lawrence, W.G., and Nucker, D.J., An Investigation of the Volatility of Glaze Constituents by the Use of the Spectrograph, J. Am. Ceram. Soc., 1940, vol. 23, no. 4, pp. 111-116.

    Google Scholar 

  67. Cole, S.S. and Taylor, N.W., The System Na2O-B2O3: IV. Vapor Pressures of Boric Oxide, Sodium Metaborate and Sodium Diborate Between 1150°C and 1400°C, J. Am. Ceram. Soc., 1935, vol. 18, no. 3, pp. 82-85.

    Google Scholar 

  68. Kroger, C. and Stratmann, J., Dampfund Lersetzungsdrucke einiger an der Glasschmelze beteiligter Alkaliverbindungen, Glastech. Ber., 1961, vol. 34, no. 5, pp. 311-320.

    Google Scholar 

  69. Solomin, N.V., On the Chemical Compounds in Borate Glasses, in Stroenie stekla (Glass Structure), Moscow: Nauka, 1955, pp. 230-233.

    Google Scholar 

  70. Oldfield, L.F. and Wright, R.D., The Volatilization of Constituents from Borosilicate Glass at Elevated Temperatures, in Advances in Glass Technology, New York, 1962, part 1, pp. 35-51.

  71. Kolykov, G.A., Selective Volatilization of Components in the Na2O-B2O3-SiO2 System as a Method of Investigation into the Nature of the Vitreous State, in Stroenie stekla (Glass Structure), Moscow: Nauka, 1955, pp. 234-244.

    Google Scholar 

  72. Kroger, C. and Sorstrom, L.A., Dampfdruck von silicaglasern und deren Bestandteilen, Glastech. Ber., 1965, vol. 38, no. 8, pp. 313-322.

    Google Scholar 

  73. Kazenas, E.K. and Tsvetkov, Yu.V., Isparenie oksidov (Oxide Vaporization), Moscow: Nauka, 1997.

    Google Scholar 

  74. Semenov, G.A., Nikolaev, E.N., and Frantseva, K.E., Primenenie mass spektrometrii v neorganicheskoi khimii (Application of Mass Spectrometry in Inorganic Chemistry), Leningrad: Khimiya, 1976.

    Google Scholar 

  75. Sidorov, L.N., Korobov, M.V., and Zhuravleva, L.V., Mass-spektral'nye termodinamicheskie issledovaniya (Mass-Spectrometric Thermodynamic Investigations), Moscow: Mosk. Gos. Univ., 1985.

    Google Scholar 

  76. Farber, M. and Srivastava, R.D., Effusion Mass Spectrometric Determination of the Thermodynamic Properties of KAlO (g) and KSiO (g), High Temp. Sci., 1986, vol. 21, no. 1, pp. 17-26.

    Google Scholar 

  77. Thompson, R.R., Mass Spectrometric Determination of the Atomization Energies of AlSiO (g) and Al2O (g), High Temp. Sci., 1973, vol. 5, no. 1, pp. 62-67.

    Google Scholar 

  78. Shakhmatkin, B.A. and Shultz, M.M., Thermodynamic Functions of Glass-forming Melts in the Na2O-SiO2 System in the Temperature Range 800-1200°C, Fiz. Khim. Stekla, 1980, vol. 6, no. 2, pp. 129-135.

    Google Scholar 

  79. Sanders, D.M. and Haller, W.K., A High Temperature Transpiration Apparatures for Study of the Atmosphere above Viscous Incongruently Vaporizing Melts, NBS Special Publication 561/1: Characterization of High Temperature Vapors and Gases, Washington, 1979, pp. 111-124.

  80. Konsaka, S., Sato, S., and Yokokawa, T., E.m.f. Measurements of Molten Oxide Mixtures. III. Sodium Oxide + Silicon Dioxide, J. Chem. Thermodyn., 1979, vol. 11, no. 6, pp. 547-551.

    Google Scholar 

  81. Neudorf, D.A. and Elliot, J.F., Thermodynamic Properties of Sodium Oxide-Silica-Calcium Oxide Melts at 1000-1100°C, Metall. Trans. B, 1980, vol. 11, no. 4, pp. 607-614.

    Google Scholar 

  82. Tsukihashi, F. and Sano, N., Measurement of the Activity of Na2O in Na2O-SiO2 Melts by Chemical Equilibrium Method, Tetsu to Hagane, J. Iron Steel Inst. Jpn., 1985, vol. 71, no. 7, pp. 815-822.

    Google Scholar 

  83. Ushakov, V.M., Borisova, N.V., Starodubtsev, A.M., and Shultz, M.M., Heat Capacities and Enthalpies of Formation of Sodium Silicate Glasses, “Problemy kalorimetrii i khimicheskoi termodinamiki” (Abstracts of Papers, Conf. “Problems in Calorimetry and Chemical Thermodynamics”), Chernogolovka, 1984, vol. 2, pp. 411-413.

    Google Scholar 

  84. Charles, R.J., Activities in Li2O-Na2O and K2O-SiO2 Solutions, J. Am. Ceram. Soc., 1967, vol. 50, no. 12, pp. 631-640.

    Google Scholar 

  85. Rein, R.H. and Chipman, J., Activities in the Liquid Solution SiO2-CaO-MgO-Al2O3 at 1600°C, Trans. Metall. Soc. Am. Inst. Mining Energies, 1965, vol. 233, no. 3, pp. 415-425.

    Google Scholar 

  86. Elliott, J.F., Gleiser, M., and Ramakrishna, V., Thermochemistry for Steelmaking, Massachusetts, 1963, vol. 2.

  87. Mehta, S.R. and Richardson, F.D., Activities of Manganese Oxide and Mixing Relationships in Silicate and Aluminate Melts, J. Iron Steel Inst. London, 1965, vol. 203, no. 5, pp. 524-528.

    Google Scholar 

  88. Kozuka, L. and Samis, C.S., Thermodynamic Properties of Melt PbO-SiO2 System, Metall. Trans. ASM-AIME, 1970, vol. 1, no. 4, pp. 871-876.

    Google Scholar 

  89. Matsushita, Y. and Goto, K., On the Rate of Fluidized-Bed Reduction of Iron Ore, J. Iron Steel Inst. Jpn., 1964, vol. 4, no. 2, pp. 128-138.

    Google Scholar 

  90. Esin, O.A., Sryvalin, I.T., and Khlynov, V.V., Thermodynamic Analysis of Sodium-Lead Silicate Melts, Zh. Neorg. Khim., 1957, vol. 2, no. 10, pp. 2429-2442.

    Google Scholar 

  91. Rao, B.K. and Gaskell, D.R., The Thermodynamic Properties of Melts in the MnO-SiO2 System, Metall. Trans. B, 1981, vol. 12, pp. 311-317.

    Google Scholar 

  92. Schulmann, R. and Ensio, P.J., Thermodynamics of Iron-Silicate Slags: Slags Saturated with Gamma Iron, J. Met., 1951, vol. 3, no. 5, pp. 401-411.

    Google Scholar 

  93. Gidikova, N., Nenov, D., Motseva, A., Kalchev, S., and Georgiev, K., Determination of FeO Activity in the FeO-SiO2 and CaO-FeO-SiO2 Silicate Systems, Metallurgiya (NRB), 1984, vol. 39, no. A-10, pp. 9-12.

    Google Scholar 

  94. Omori, J. and Sanbongi, K., Activity of CaO in Slag of CaO-SiO2-Al2O3 System, J. Jpn. Inst. Met., 1961, vol. 25, no. 2, pp. 139-143.

    Google Scholar 

  95. Sharma, R.A. and Richardson, F.D., The Solubility of Calcium Sulphide and Activities in Lime-Silica Melts, J. Iron Steel Inst. Jpn., 1962, vol. 200, no. 5, pp. 373-379.

    Google Scholar 

  96. Bukhtoyarov, O.I., Kurlov, S.P., and Lepinskikh, B.M., Monte Carlo Simulation of Structure and Thermodynamic Properties of Melts in the CaO-SiO2 System, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 1985, no. 11, pp. 1-4.

  97. Rocket, T.Y. and Foster, W.R., Phase Relations in the System Boron Oxide-Silica, J. Am. Ceram. Soc., 1965, vol. 48, no. 1, pp. 75-80.

    Google Scholar 

  98. Navrotsky, A., Hervig, R.L., Roy, B.N., and Huffman, M., Thermochemical Studies of Silicates, Aluminosilicate and Borosilicate Glasses, High Temp. Sci., 1985, vol. 19, no. 2, pp. 139-150.

    Google Scholar 

  99. Hervig, R.L. and Navrotsky, A., Thermochemistry of Sodium Borosilicate Glasses, J. Am. Ceram. Soc., 1985, vol. 68, no. 6, pp. 314-319.

    Google Scholar 

  100. Vasilevskaya, T.N., Golubkov, V.V., and Porai-Koshits, E.A., On the Phase Separation and Submicroinhomogeneous Structure of Glasses in the B2O3-SiO2 System, Fiz. Khim. Stekla, 1980, vol. 6, no. 1, pp. 51-60.

    Google Scholar 

  101. Kohsaka, S., Sato, S., and Yokokawa, T., E.m.f., Measurements on Molten Mixtures of Sodium Oxide + Germanium Dioxide, J. Chem. Thermodyn., 1978, vol. 10, no. 2, pp. 117-127.

    Google Scholar 

  102. Fun, M., Muller, F., and Wilsman, W., Thermochemistry and Structure of the Liquid Na2O-GeO2 System, Thermochim. Acta, 1993, vol. 224, no. 1, pp. 19-32.

    Google Scholar 

  103. Baret, G., Etude thermodynamique et experimentale de melanges d'oxydes á basse temperature de fluage pour l'electronique, Thèse, Laboratoroire de Thermodynamique et Physico-Chimie Metallurgiques (ENSEEG), Grenoble, 1984.

    Google Scholar 

  104. Shakhmatkin, B.A. and Shultz, M.M., Thermodynamic Functions of Glass-forming Melts in the Na2O-B2O3 System in the Temperature Range 700-1000°C, Fiz. Khim. Stekla, 1978, vol. 4, no. 3, pp. 271-277.

    Google Scholar 

  105. Richardson, F.D., Physical Chemistry of Melts in Metallurgy, London: Academic, 1974, vol. 1.

    Google Scholar 

  106. Dai, C., Zhang, X., and Shui, L., A New Method for Measuring Activities in Slags Containing Volatile Component, Metall. Trans. B, 1995, vol. 26, no. 3, pp. 651-653.

    Google Scholar 

  107. Hideaki, S., Yougi, J., and Masayasu, O., Activities of Lead Oxide in the Melts PbO-B2O3 and PbO-B2O3-M2O (M = Li, Na, K), Trans. Jpn. Inst. Met., 1976, vol. 17, no. 12, pp. 818-827.

    Google Scholar 

  108. Kapoor, M.J. and Frohberg, M.G., Thermodynamic Properties of the System PbO-B2O3, Can. Metall. Quart., 1968, vol. 7, no. 4, pp. 191-198.

    Google Scholar 

  109. Sanbongi, K. and Omori, Y., Research on the Activity of Components in Fundamental System in Iron Blast Furnace Slag: 1. Measurement of the Activity of Silica in the System of CaO-SiO2 and CaO-SiO2-Al2O3, Sci. Rep. Tohoku Univ., Ser. A, 1959, vol. 11, no. 3, pp. 244-263.

    Google Scholar 

  110. Sakagami, R., Electochemical Study on Molten Slags, J. Iron Steel Inst. Jpn., 1953, vol. 39, pp. 587-595, 688-697, 1240-1250.

    Google Scholar 

  111. Yang, L., McCabe, C.L., and Miller, R., A Summary of Some Experimental Work on the Activity of Silica in Liquid Silicate Systems, in The Physical Chemistry of Steelmaking, New York, 1958, pp. 63-64.

  112. Chou, Y. and Chao, P., Activities in Liquid CaO-SiO2 and CaO-Al2O3 Slags, Sci. Sin. (Engl. Ed.), 1963, vol. 12, no. 8, pp. 1249-1250.

    Google Scholar 

  113. Kay, D.A.R. and Taylor, J., Activity of Silica in Lime-Alumina-Silica System, Trans. Faraday Soc., 1960, vol. 56, part 9, pp. 1372-1386.

    Google Scholar 

  114. Chou, Y. and Chao, P., Activity of CaO in Liquid CaO-SiO2 and CaO-Al2O3-SiO2 Slags, Sci. Sin. (Engl. Ed.), 1962, vol. 11, no. 9, pp. 1287-1302.

    Google Scholar 

  115. Stolyarova, V.L., Application of the Belton-Fruehan Mass Spectrometric Method to Study Thermodynamic Properties of Oxide Melts, Proc. V. Int. Conf. on Molten Slags, Fluxes and Salts '97, Sydney, 1997, pp. 761-768.

  116. Bauer, E. and Brunner, R., Uber das Verhalten von Sauerstoffelectroden in Carbonatschmelzen, Z. Electrochem., 1935, vol. 41, no. 11, pp. 794-796.

    Google Scholar 

  117. Ostvold, T. and Kleppa, O.J., Thermochemistry of Liquid Borates: Partial Enthalpies of Solution of Boric Oxide in Its Liquid Mixtures with Lithium, Sodium and Potassium Oxides, Inorg. Chem., 1970, vol. 9, no. 6, pp. 1395-1400.

    Google Scholar 

  118. Rudnyi, E.B., Determination of Reaction Enthalpies from Equilibrium Constants: Second or Third Law?, Primenenie matematicheskikh metodov dlya opisaniya i izucheniya fiziko-khimicheskikh ravnovesii. Rasshirennye tezisy dokl. V Vses. shkoly (Extended Abstracts of Papers, V All-Union School on the Application of Mathematical Methods to Description and Study of Physicochemical Equilibria), Novosibirsk, 1985, part 1, pp. 105-109.

  119. Shultz, M.M., Borisova, N.V., and Kozhina, E.L., Thermodynamics of High-Melting Oxide Systems from the Viewpoint of Criteria for Stability of Equilibrium, in Khimiya silikatov i oksidov (Chemistry of Silicates and Oxides), Leningrad: Nauka, 1982, pp. 3-19.

    Google Scholar 

  120. Storonkin, A.V. and Shultz, M.M., Some Problems in Thermodynamics of Multicomponent Heterogeneous Systems: II. Necessary Conditions for the Stability of Heterogeneous Systems, Zh. Fiz. Khim., 1960, vol. 34, no. 9, pp. 1928-1932.

    Google Scholar 

  121. Stolyarova, V.L., Vaporization Features of Oxide Systems Studied by High-Temperature Mass Spectrometry, J. Nucl. Mater., 1997, vol. 247, nos. 2-3, pp. 7-10.

    Google Scholar 

  122. Shultz, M.M., The Acid-Base Concept as Applied to Oxide Melts and Glasses and the D.I. Mendeleev Theory of the Vitreous State, Fiz. Khim. Stekla, 1984, vol. 10, no. 2, pp. 129-138.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stolyarova, V.L. A Mass Spectrometric Study of the Thermodynamic Properties of Oxide Melts. Glass Physics and Chemistry 27, 3–15 (2001). https://doi.org/10.1023/A:1009599502138

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009599502138

Keywords

Navigation