Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 11, 2020

Citrate synthase desuccinylation by SIRT5 promotes colon cancer cell proliferation and migration

  • Mengmeng Ren , Xin Yang , Juntao Bie , Zhe Wang , Minghui Liu , Yutong Li , Genze Shao and Jianyuan Luo ORCID logo EMAIL logo
From the journal Biological Chemistry

Abstract

Citrate synthase (CS), the rate-limiting enzyme in the tricarboxylic acid (TCA) cycle catalyzes the first step of the cycle, namely, the condensation of oxaloacetate and acetyl-CoA to produce citrate. The expression and enzymatic activity of CS are altered in cancers, but posttranslational modification (PTM) of CS and its regulation in tumorigenesis remain largely obscure. SIRT5 belongs to the nicotinamide adenine dinucleotide (NAD)+-dependent deacetylase sirtuin family and plays vital roles in multiple biological processes via modulating various substrates. Here, we show that SIRT5 interacts with CS and that SIRT5 desuccinylates CS at the evolutionarily conserved residues K393 and K395. Moreover, hypersuccinylation of CS at K393 and K395 dramatically reduces its enzymatic activity and suppresses colon cancer cell proliferation and migration. These results provide experimental evidence in support of a potential therapeutic approach for colon cancer.


Corresponding author: Jianyuan Luo, Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing, 100191, China; and Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, 100191, Beijing, China, E-mail:

Award Identifier / Grant number: 81874147, 81671389

Acknowledgments

We thank the core facility at Peking University Health Science Center for mass-spectrometry analysis. This study was supported by the National Natural Science Foundation of China, No. 81874147, 81671389.

References

Anderson, A.S., Roberts, P.C., Frisard, M.I., McMillan, R.P., Brown, T.J., Lawless, M.H., Hulver, M.W., and Schmelz, E.M. (2013). Metabolic changes during ovarian cancer progression as targets for sphingosine treatment. Exp. Cell Res. 319: 1431–1442, https://doi.org/10.1016/j.yexcr.2013.02.017.Search in Google Scholar PubMed PubMed Central

Boylston, J.A., Sun, J., Chen, Y., Gucek, M., Sack, M.N., and Murphy, E. (2015). Characterization of the cardiac succinylome and its role in ischemia-reperfusion injury. J. Mol. Cell. Cardiol. 88: 73–81, https://doi.org/10.1016/j.yjmcc.2015.09.005.Search in Google Scholar PubMed PubMed Central

Chen, L., Liu, T., Zhou, J., Wang, Y., Wang, X., Di, W., and Zhang, S. (2014). Citrate synthase expression affects tumor phenotype and drug resistance in human ovarian carcinoma. PLoS One 9: e115708.10.1371/journal.pone.0115708Search in Google Scholar PubMed PubMed Central

Chen, X.F., Tian, M.X., Sun, R.Q., Zhang, M.L., Zhou, L.S., Jin, L., Chen, L.L., Zhou, W.J., Duan, K.L., Chen, Y.J., et al. (2018). SIRT5 inhibits peroxisomal ACOX1 to prevent oxidative damage and is downregulated in liver cancer. EMBO Rep. 19: e45124, https://doi.org/10.15252/embr.201745124.Search in Google Scholar PubMed PubMed Central

Cui, X.X., Li, X., Dong, S.Y., Guo, Y.J., Liu, T., and Wu, Y.C. (2017). SIRT3 deacetylated and increased citrate synthase activity in PD model. Biochem. Biophys. Res. Commun. 484: 767–773.10.1016/j.bbrc.2017.01.163Search in Google Scholar PubMed

Du, J., Zhou, Y., Su, X., Yu, J.J., Khan, S., Jiang, H., Kim, J., Woo, J., Kim, J.H., Choi, B.H., et al. (2011). Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 334: 806–809, https://doi.org/10.1126/science.1207861.Search in Google Scholar PubMed PubMed Central

Fan, W. and Luo, J. (2010). SIRT1 regulates UV-induced DNA repair through deacetylating XPA. Mol. Cell. 39: 247–258, https://doi.org/10.1016/j.molcel.2010.07.006.Search in Google Scholar PubMed

Frye, R.A. (2000). Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem. Biophys. Res. Commun. 273: 793–798, https://doi.org/10.1006/bbrc.2000.3000.Search in Google Scholar PubMed

Guan, D., Lim, J.H., Peng, L., Liu, Y., Lam, M., Seto, E., and Kao, H.Y. (2014). Deacetylation of the tumor suppressor protein PML regulates hydrogen peroxide-induced cell death. Cell Death Dis. 5: e1340, https://doi.org/10.1038/cddis.2014.185.Search in Google Scholar PubMed PubMed Central

Hirschey, M.D. and Zhao, Y.M. (2015). Metabolic regulation by lysine malonylation, succinylation, and glutarylation. Mol. Cell. Proteomics 14: 2308–2315, https://doi.org/10.1074/mcp.r114.046664.Search in Google Scholar

Lin, C.C., Cheng, T.L., Tsai, W.H., Tsai, H.J., Hu, K.H., Chang, H.C., Yeh, C.W., Chen, Y.C., Liao, C.C., and Chang, W.T. (2012). Loss of the respiratory enzyme citrate synthase directly links the Warburg effect to tumor malignancy. Sci. Rep. 2: 785, https://doi.org/10.1038/srep00785.Search in Google Scholar

Li, F., He, X., Ye, D., Lin, Y., Yu, H., Yao, C., Huang, L., Zhang, J., Wang, F., Xu, S., et al. (2015). NADP+-IDH mutations promote hypersuccinylation that impairs mitochondria respiration and induces apoptosis resistance. Mol. Cell. 60: 661–675, https://doi.org/10.1016/j.molcel.2015.10.017.Search in Google Scholar

Lin, Z.F., Xu, H.B., Wang, J.Y., Lin, Q., Ruan, Z., Liu, F.B., Jin, W., Huang, H.H., and Chen, X. (2013). SIRT5 desuccinylates and activates SOD1 to eliminate ROS. Biochem. Biophys. Res. Commun. 441: 191–195, https://doi.org/10.1016/j.bbrc.2013.10.033.Search in Google Scholar

Lombard, D.B., Alt, F.W., Cheng, H.L., Bunkenborg, J., Streeper, R.S., Mostoslavsky, R., Kim, J., Yancopoulos, G., Valenzuela, D., Murphy, A., et al. (2007). Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol. Cell. Biol. 27: 8807–8814, https://doi.org/10.1128/mcb.01636-07.Search in Google Scholar

Lu, W., Zuo, Y., Feng, Y., and Zhang, M. (2014). SIRT5 facilitates cancer cell growth and drug resistance in non-small cell lung cancer. Tumor Biol 35: 10699–10705.10.1007/s13277-014-2372-4Search in Google Scholar

Lv, X.B., Liu, L., Cheng, C., Yu, B., Xiong, L., Hu, K., Tang, J., Zeng, L., and Sang, Y. (2015). SUN2 exerts tumor suppressor functions by suppressing the Warburg effect in lung cancer. Sci. Rep. 5: 17940.10.1038/srep17940Search in Google Scholar

Ma, Y., Qi, Y., Wang, L., Zheng, Z., Zhang, Y., and Zheng, J. (2019). SIRT5-mediated SDHA desuccinylation promotes clear cell renal cell carcinoma tumorigenesis. Free Radic. Biol. Med. 134: 458–467, https://doi.org/10.1016/j.freeradbiomed.2019.01.030.Search in Google Scholar

Malecki, J., Jakobsson, M.E., Ho, A.Y.Y., Moen, A., Rustan, A.C., and Falnes, P.O. (2017). Uncovering human METTL12 as a mitochondrial methyltransferase that modulates citrate synthase activity through metabolite-sensitive lysine methylation. J. Biol. Chem. 292: 17950–17962, https://doi.org/10.1074/jbc.M117.808451.Search in Google Scholar

Montal, E.D., Dewi, R., Bhalla, K., Ou, L., Hwang, B.J., Ropell, A.E., Gordon, C., Liu, W.J., DeBerardinis, R.J., Sudderth, J., et al. (2015). PEPCK coordinates the regulation of central carbon metabolism to promote cancer cell growth. Mol Cell 60: 571–583, https://doi.org/10.1016/j.molcel.2015.09.025.Search in Google Scholar

Mukherjee, A., Srere, P.A., and Frenkel, E.P. (1976). Studies of the mechanism by which hepatic citrate synthase activity increases in vitamin B12 deprivation. J. Biol. Chem. 251: 2155–2160.10.1016/S0021-9258(17)33669-4Search in Google Scholar

Nakagawa, T.L., Lomb, D.J., Haigis, M.C., and Guarente, L. (2009). SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 137: 560–570, https://doi.org/10.1016/j.cell.2009.02.026.Search in Google Scholar PubMed PubMed Central

Nakamura, Y., Ogura, M., Ogura, K., Tanaka, D., and Inagaki, N. (2012). SIRT5 deacetylates and activates urate oxidase in liver mitochondria of mice. FEBS Lett. 586: 4076–4081, https://doi.org/10.1016/j.febslet.2012.10.009.Search in Google Scholar PubMed

Nishida, Y., Rardin, M.J., Carrico, C., He, W., Sahu, A.K., Gut, P., Najjar, R., Fitch, M., Hellerstein, M., Gibson, B.W., et al. (2015). SIRT5 regulates both cytosolic and mitochondrial protein malonylation with glycolysis as a major target. Mol. Cell. 59: 321–332, https://doi.org/10.1016/j.molcel.2015.05.022.Search in Google Scholar PubMed PubMed Central

Park, J., Chen, Y., Tishkoff, D.X., Peng, C., Tan, M., Dai, L., Xie, Z., Zhang, Y., Zwaans, B.M., Skinner, M.E., et al. (2013). SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol. Cell. 50: 919–930, https://doi.org/10.1016/j.molcel.2013.06.001.Search in Google Scholar PubMed PubMed Central

Rardin, M.J., He, W., Nishida, Y., Newman, J.C., Carrico, C., Danielson, S.R., Guo, A., Gut, P., Sahu, A.K., Li, B., et al. (2013). SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metabol. 18: 920–933, https://doi.org/10.1016/j.cmet.2013.11.013.Search in Google Scholar PubMed PubMed Central

Sadhukhan, S., Liu, X., Ryu, D., Nelson, O.D., Stupinski, J.A., Li, Z., Chen, W., Zhang, S., Weiss, R.S., Locasaleb, J.W., et al. (2016). Metabolomics-assisted proteomics identifies succinylation and SIRT5 as important regulators of cardiac function. Proc. Natl. Acad. Sci. 113: 4320–4325, https://doi.org/10.1073/pnas.1519858113.Search in Google Scholar PubMed PubMed Central

Schlichtholz, B., Turyn, J., Goyke, E., Biernacki, M., Jaskiewicz, K., Sledzinski, Z., and Swierczynski, J. (2005). Enhanced citrate synthase activity in human pancreatic cancer. Pancreas 30: 99–104, https://doi.org/10.1097/01.mpa.0000153326.69816.7d.Search in Google Scholar PubMed

van der Mijn, J.C., Panka, D.J., Geissler, A.K., Verheul, H.M., and Mier, J.W. (2016). Novel drugs that target the metabolic reprogramming in renal cell cancer. Canc. Metabol. 4: 14, https://doi.org/10.1186/s40170-016-0154-8.Search in Google Scholar PubMed PubMed Central

Wang, Y.Q., Wang, H.L., Xu, J., Tan, J., Fu, L.N., Wang, J.L., Zou, T.H., Sun, D.F., Gao, Q.Y., Chen, Y.X., et al. (2018). Sirtuin5 contributes to colorectal carcinogenesis by enhancing glutaminolysis in a deglutarylation-dependent manner. Nat. Commun. 9: 545, https://doi.org/10.1038/s41467-018-02951-4.Search in Google Scholar PubMed PubMed Central

Weinert, B.T., Scholz, C., Wagner, S.A., Iesmantavicius, V., Su, D., Daniel, J.A., and Choudhary, C. (2013). Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation. Cell Rep. 4: 842–851, https://doi.org/10.1016/j.celrep.2013.07.024.Search in Google Scholar PubMed

Yang, X., Wang, Z., Li, X., Liu, B., Liu, M., Liu, L., Chen, S., Ren, M., Wang, Y., Yu, M., et al. (2018). SHMT2 desuccinylation by SIRT5 drives cancer cell proliferation. Cancer Res. 78: 372–386, https://doi.org/10.1158/0008-5472.can-17-1912.Search in Google Scholar

Ye, X., Niu, X., Gu, L., Xu, Y., Li, Z., Yu, Y., Chen, Z., and Lu, S. (2017). Desuccinylation of pyruvate kinase M2 by SIRT5 contributes to antioxidant response and tumor growth. Oncotarget 8: 6984–6993.10.18632/oncotarget.14346Search in Google Scholar PubMed PubMed Central

Yuan, C., Clish, C.B., Wu, C., Mayers, J.R., Kraft, P., Townsend, M.K., Zhang, M., Tworoger, S.S., Bao, Y., Qian, Z.R., et al. (2016). Circulating metabolites and survival among patients with pancreatic cancer. J. Natl. Cancer Inst. 108: djv409, https://doi.org/10.1093/jnci/djv409.Search in Google Scholar PubMed PubMed Central

Zhang, M., Wu, J., Sun, R., Tao, X., Wang, X., Kang, Q., Wang, H., Zhang, L., Liu, P., Zhang, J., et al. (2019). SIRT5 deficiency suppresses mitochondrial ATP production and promotes AMPK activation in response to energy stress. PLoS One 14: e0211796, https://doi.org/10.1371/journal.pone.0211796.Search in Google Scholar PubMed PubMed Central

Zhang, Y., Bharathi, S.S., Rardin, M.J., Lu, J., Maringer, K.V., Sims- Lucas, S., Prochownik, E.V., Gibson, B.W., and Goetzman, E.S. (2017). Lysine desuccinylase SIRT5 binds to cardiolipin and regulates the electron transport chain. J. Biol. Chem. 292: 10239–10249.10.1074/jbc.M117.785022Search in Google Scholar PubMed PubMed Central

Zhang, Y., Bharathi, S.S., Rardin, M.J., Uppala, R., Verdin, E., Gibson, B.W., and Goetzman, E.S. (2015). SIRT3 and SIRT5 regulate the enzyme activity and cardiolipin binding of very long-chain acyl-CoA dehydrogenase. PLoS One 10: e0122297, https://doi.org/10.1371/journal.pone.0122297.Search in Google Scholar PubMed PubMed Central

Zhou, L., Wang, F., Sun, R., Chen, X., Zhang, M., Xu, Q., Wang, Y., Wang, S., Xiong, Y., Guan, K.L., et al. (2016). SIRT5 promotes IDH2 desuccinylation and G6PD deglutarylation to enhance cellular antioxidant defense. EMBO Rep. 17: 811–822, https://doi.org/10.15252/embr.201541643.Search in Google Scholar PubMed PubMed Central

Received: 2020-01-27
Accepted: 2020-03-31
Published Online: 2020-08-11
Published in Print: 2020-08-27

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2020-0118/html
Scroll to top button