Skip to main content
Log in

Prognostic Value of Myosteatosis and Creatinine-to-Cystatin C Ratio in Patients with Pancreatic Cancer Who Underwent Radical Surgery

  • Pancreatic Tumors
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Myosteatosis is correlated with poor prognosis in some malignancies. The creatinine-to-cystatin ratio (CCR) is revealed to predict gastric cancer prognosis. However, the prognostic abilities of CCR and the combination of CCR and myosteatosis in patients with pancreatic cancer (PC) who underwent radical surgery remains unclear.

Methods

The retrospective cohort study included 215 patients with PC who underwent radical surgery (January 2016–October 2021). Clinicopathological and serological data were collected on admission. Myosteatosis and other body composition indices were assessed by using computed tomography. The cutoff value of CCR was determined by using the Youden index. Risk factors responsible for poor overall survival (OS) and disease-free survival (DFS) were determined by the Cox proportional hazards model.

Results

The myosteatosis group included 104 patients (average age, 61.3 ± 9.1 years). The best cutoff value for CCR was 1.09. CCR ≤ 1.09 was an independent predictive biomarker inversely corelated with OS (P = 0.036). Myosteatosis was an independent risk factor associated with OS and DFS (P = 0.032 and P = 0.004, respectively). Patients with concomitant myosteatosis and CCR ≤ 1.09 had the worst OS (P = 0.016).

Conclusions

Myosteatosis and CCR are prognostic biomarkers for survival in PC patients who underwent radical surgery. Patients with the coexistence of myosteatosis and CCR ≤ 1.09 deserve more attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The data presented in this study are available on request from the corresponding author (X.J.).

References

  1. Zhao T, Xiao D, Jin F, et al. ESE3-positive PSCs drive pancreatic cancer fibrosis, chemoresistance and poor prognosis via tumour-stromal IL-1β/NF-κB/ESE3 signalling axis. Br J Cancer. 2022;127(8):1461–72. https://doi.org/10.1038/s41416-022-01927-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Peng YC, Wu CH, Tien YW, Lu TP, Wang YH, Chen BB. Preoperative sarcopenia is associated with poor overall survival in pancreatic cancer patients following pancreaticoduodenectomy. Eur Radiol. 2021;31(4):2472–81. https://doi.org/10.1007/s00330-020-07294-7.

    Article  PubMed  Google Scholar 

  3. Schouten TJ, Daamen LA, Dorland G, et al. Nationwide validation of the 8th American joint committee on cancer TNM staging system and five proposed modifications for resected pancreatic cancer. Ann Surg Oncol. 2022;29(9):5988–99. https://doi.org/10.1245/s10434-022-11664-4.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wang Z, Hu F, Chang R, et al. Development and validation of a prognostic model to predict overall survival for lung adenocarcinoma: a population-based study from the SEER database and the Chinese multicenter lung cancer database. Technol Cancer Res Treat. 2022;21:15330338221133222. https://doi.org/10.1177/15330338221133222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hopkins JJ, Reif RL, Bigam DL, Baracos VE, Eurich DT, Sawyer MB. The impact of muscle and adipose tissue on long-term survival in patients with stage I to III colorectal cancer. Dis Colon Rectum. 2019;62(5):549–60. https://doi.org/10.1097/dcr.0000000000001352.

    Article  PubMed  Google Scholar 

  6. Ishizu Y, Ishigami M, Honda T, et al. Factors associated with the progression of myosteatosis in patients with cirrhosis. Nutrition. 2022;103–4:111777. https://doi.org/10.1016/j.nut.2022.111777.

    Article  Google Scholar 

  7. Zhuang CL, Shen X, Huang YY, et al. Myosteatosis predicts prognosis after radical gastrectomy for gastric cancer: a propensity score-matched analysis from a large-scale cohort. Surgery. 2019;166(3):297–304. https://doi.org/10.1016/j.surg.2019.03.020.

    Article  PubMed  Google Scholar 

  8. Srpcic M, Jordan T, Popuri K, Sok M. Sarcopenia and myosteatosis at presentation adversely affect survival after esophagectomy for esophageal cancer. Radiol Oncol. 2020;54(2):237–46. https://doi.org/10.2478/raon-2020-0016.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hong S, Kim KW, Park HJ, et al. Impact of baseline muscle mass and myosteatosis on the development of early toxicity during first-line chemotherapy in patients with initially metastatic pancreatic cancer. Front Oncol. 2022;12:878472. https://doi.org/10.3389/fonc.2022.878472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tabara Y, Okada Y, Ochi M, Ohyagi Y, Igase M. Different associations of skeletal muscle mass index and creatinine-to-cystatin C ratio with muscle mass and myosteatosis: the J-SHIPP Study. J Am Med Direct Assoc. 2021;22(12):2600–2. https://doi.org/10.1016/j.jamda.2021.06.033.

    Article  Google Scholar 

  11. Ulmann G, Kaï J, Durand JP, et al. Creatinine-to-cystatin C ratio and bioelectrical impedance analysis for the assessement of low lean body mass in cancer patients: comparison to L3-computed tomography scan. Nutrition. 2021;81:110895. https://doi.org/10.1016/j.nut.2020.110895.

    Article  CAS  PubMed  Google Scholar 

  12. Gao J, Liang H, Qian Y, et al. Creatinine-to-cystatin C ratio as a marker of skeletal muscle mass for predicting postoperative complications in patients undergoing gastric cancer surgery. Ann Palliat Med. 2021;10(5):5017–26. https://doi.org/10.21037/apm-20-2366.

    Article  PubMed  Google Scholar 

  13. Shi S, Jiang Y, Chen W, Chen K, Liao Y, Huang K. Diagnostic and prognostic value of the creatinine/cystatin C ratio for low muscle mass evaluation among US adults. Front Nutr. 2022;9:897774. https://doi.org/10.3389/fnut.2022.897774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sherwood P, Lyburn I, Brown S, Ryder S. How are abnormal results for liver function tests dealt with in primary care? Audit of yield and impact. BMJ. 2001;322(7281):276–8. https://doi.org/10.1136/bmj.322.7281.276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bhanji RA, Takahashi N, Moynagh MR, et al. The evolution and impact of sarcopenia pre- and post-liver transplantation. Alimen Pharmacol Therap. 2019;49(6):807–13. https://doi.org/10.1111/apt.15161.

    Article  Google Scholar 

  16. Pozzuto L, Silveira MN, Mendes MCS, et al. Myosteatosis differentially affects the prognosis of non-metastatic colon and rectal cancer patients: an exploratory study. Front Oncol. 2021;11:762444. https://doi.org/10.3389/fonc.2021.762444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ebadi M, Tsien C, Bhanji RA, et al. Myosteatosis in cirrhosis: a review of diagnosis, pathophysiological mechanisms and potential interventions. Cells. 2022;11(7):1216. https://doi.org/10.3390/cells11071216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Reichelt S, Pratschke J, Engelmann C, Neumann UP, Lurje G, Czigany Z. Body composition and the skeletal muscle compartment in liver transplantation: turning challenges into opportunities. Am J Transpl. 2022;22(8):1943–57. https://doi.org/10.1111/ajt.17089.

    Article  Google Scholar 

  19. Bhanji RA, Moctezuma-Velazquez C, Duarte-Rojo A, et al. Myosteatosis and sarcopenia are associated with hepatic encephalopathy in patients with cirrhosis. Hepatol Int. 2018;12(4):377–86. https://doi.org/10.1007/s12072-018-9875-9.

    Article  PubMed  Google Scholar 

  20. Lascala F, da Silva Moraes BK, Mendes MCS, et al. Prognostic value of myosteatosis and systemic inflammation in patients with resectable gastric cancer: a retrospective study. Eur J Clin Nutr. 2022. https://doi.org/10.1038/s41430-022-01201-7.

    Article  PubMed  Google Scholar 

  21. Wang X, Sun M, Li Y, et al. Association of myosteatosis with various body composition abnormalities and longer length of hospitalization in patients with decompensated cirrhosis. Front Nutr. 2022;9:921181. https://doi.org/10.3389/fnut.2022.921181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(4):601. https://doi.org/10.1093/ageing/afz046.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chen WZ, Shen ZL, Zhang FM, et al. Prognostic value of myosteatosis and sarcopenia for elderly patients with colorectal cancer: a large-scale double-center study. Surgery. 2022;172(4):1185–93. https://doi.org/10.1016/j.surg.2022.05.031.

    Article  PubMed  Google Scholar 

  24. van Dijk DPJ, Zhao J, Kemter K, et al. Ectopic fat in liver and skeletal muscle is associated with shorter overall survival in patients with colorectal liver metastases. J Cach Sarcop Muscle. 2021;12(4):983–92. https://doi.org/10.1002/jcsm.12723.

    Article  Google Scholar 

  25. Yamashita S, Iwahashi Y, Miyai H, et al. Myosteatosis as a novel prognostic biomarker after radical cystectomy for bladder cancer. Sci Rep. 2020;10(1):22146. https://doi.org/10.1038/s41598-020-79340-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Youn S, Eurich DT, McCall M, Walker J, Smylie M, Sawyer MB. Skeletal muscle is prognostic in resected stage III malignant melanoma. Clin Nutr. 2022;41(5):1066–72. https://doi.org/10.1016/j.clnu.2022.03.001.

    Article  CAS  PubMed  Google Scholar 

  27. Kim DW, Ahn H, Kim KW, et al. Prognostic value of sarcopenia and myosteatosis in patients with resectable pancreatic ductal adenocarcinoma. Korean J Radiol. 2022;23(11):1055–66. https://doi.org/10.3348/kjr.2022.0277.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Meister FA, Lurje G, Verhoeven S, et al. The role of sarcopenia and myosteatosis in short- and long-term outcomes following curative-intent surgery for hepatocellular carcinoma in a european cohort. Cancers. 2022;14(3):720. https://doi.org/10.3390/cancers14030720.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Montano-Loza AJ, Angulo P, Meza-Junco J, et al. Sarcopenic obesity and myosteatosis are associated with higher mortality in patients with cirrhosis. J Cachexia Sarcopenia Muscle. 2016;7(2):126–35. https://doi.org/10.1002/jcsm.12039.

    Article  PubMed  Google Scholar 

  30. Yi X, Fu Y, Long Q, et al. Myosteatosis can predict unfavorable outcomes in advanced hepatocellular carcinoma patients treated with hepatic artery infusion chemotherapy and anti-PD-1 immunotherapy. Front Oncol. 2022;12:892192. https://doi.org/10.3389/fonc.2022.892192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Czigany Z, Kramp W, Lurje I, et al. The role of recipient myosteatosis in graft and patient survival after deceased donor liver transplantation. J Cachexia Sarcopenia Muscle. 2021;12(2):358–67. https://doi.org/10.1002/jcsm.12669.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Aziz MH, Sideras K, Aziz NA, et al. The systemic-immune-inflammation index independently predicts survival and recurrence in resectable pancreatic cancer and its prognostic value depends on bilirubin levels: a retrospective multicenter cohort study. Ann Surg. 2019;270(1):139–46. https://doi.org/10.1097/sla.0000000000002660.

    Article  PubMed  Google Scholar 

  33. O’Leary MF, Wallace GR, Davis ET, et al. Obese subcutaneous adipose tissue impairs human myogenesis, particularly in old skeletal muscle, via resistin-mediated activation of NFκB. Sci Rep. 2018;8(1):15360. https://doi.org/10.1038/s41598-018-33840-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Brack AS, Conboy MJ, Roy S, et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science. 2007;317(5839):807–10. https://doi.org/10.1126/science.1144090.

    Article  CAS  PubMed  Google Scholar 

  35. Hamaguchi Y, Kaido T, Okumura S, et al. Preoperative visceral adiposity and muscularity predict poor outcomes after hepatectomy for hepatocellular carcinoma. Liver Cancer. 2019;8(2):92–109. https://doi.org/10.1159/000488779.

    Article  PubMed  Google Scholar 

  36. Zamboni M, Gattazzo S, Rossi AP. Myosteatosis: a relevant, yet poorly explored element of sarcopenia. Eur Geriatric Med. 2019;10(1):5–6. https://doi.org/10.1007/s41999-018-0134-3.

    Article  Google Scholar 

  37. Rupert JE, Narasimhan A, Jengelley DHA, et al. Tumor-derived IL-6 and trans-signaling among tumor, fat, and muscle mediate pancreatic cancer cachexia. J Exp Med. 2021;218(6):e20190450. https://doi.org/10.1084/jem.20190450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li Y, Wang WB, Yang L, et al. The combination of body composition conditions and systemic inflammatory markers has prognostic value for patients with gastric cancer treated with adjuvant chemoradiotherapy. Nutrition. 2022;93:111464. https://doi.org/10.1016/j.nut.2021.111464.

    Article  CAS  PubMed  Google Scholar 

  39. Scopel Poltronieri T, de Paula NS, Chaves GV. Skeletal muscle radiodensity and cancer outcomes: a scoping review of the literature. Nutr Clin Pract. 2022;37(5):1117–41. https://doi.org/10.1002/ncp.10794.

    Article  PubMed  Google Scholar 

  40. Hamrick MW, McGee-Lawrence ME, Frechette DM. Fatty infiltration of skeletal muscle: mechanisms and comparisons with bone marrow adiposity. Front Endocrinol. 2016;7:69. https://doi.org/10.3389/fendo.2016.00069.

    Article  Google Scholar 

  41. Li CW, Yu K, Shyh-Chang N, et al. Pathogenesis of sarcopenia and the relationship with fat mass: descriptive review. J Cachexia Sarcopenia Muscle. 2022;13(2):781–94. https://doi.org/10.1002/jcsm.12901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yokoyama N, Shirai Y, Wakai T, Nagakura S, Akazawa K, Hatakeyama K. Jaundice at presentation heralds advanced disease and poor prognosis in patients with ampullary carcinoma. World J Surg. 2005;29(4):519–23. https://doi.org/10.1007/s00268-004-7709-5.

    Article  PubMed  Google Scholar 

  43. Fearon KC. Cancer cachexia and fat-muscle physiology. N Engl J Med. 2011;365(6):565–7. https://doi.org/10.1056/NEJMcibr1106880.

    Article  CAS  PubMed  Google Scholar 

  44. van Abellan Kan G, Cameron Chumlea W, Gillette-Guyonet S, et al. Clinical trials on sarcopenia: methodological issues regarding phase 3 trials. Clin Geriatr Med. 2011;27(3):471–82. https://doi.org/10.1016/j.cger.2011.03.010.

    Article  Google Scholar 

  45. Nachit M, De Rudder M, Thissen JP, et al. Myosteatosis rather than sarcopenia associates with non-alcoholic steatohepatitis in non-alcoholic fatty liver disease preclinical models. J Cachexia Sarcopenia Muscle. 2021;12(1):144–58. https://doi.org/10.1002/jcsm.12646.

    Article  PubMed  Google Scholar 

  46. Mikami K, Endo T, Sawada N, et al. Association of serum creatinine-to-cystatin C ratio with skeletal muscle mass and strength in nonalcoholic fatty liver disease in the Iwaki health promotion project. J Clin Biochem Nutr. 2022;70(3):273–82. https://doi.org/10.3164/jcbn.21-61.

    Article  CAS  PubMed  Google Scholar 

  47. Tabara Y, Okada Y, Ochi M, Ohyagi Y, Igase M. Association of creatinine-to-cystatin C ratio with myosteatosis and physical performance in older adults: the Japan Shimanami health promoting program. J Am Med Direct Assoc. 2021;22(11):2366-72.e3. https://doi.org/10.1016/j.jamda.2021.03.021.

    Article  Google Scholar 

  48. Ferguson TW, Komenda P, Tangri N. Cystatin C as a biomarker for estimating glomerular filtration rate. Curr Opin Nephrol Hypertens. 2015;24(3):295–300. https://doi.org/10.1097/mnh.0000000000000115.

    Article  CAS  PubMed  Google Scholar 

  49. Li S, Lu J, Gu G, et al. Serum creatinine-to-cystatin C ratio in the progression monitoring of non-alcoholic fatty liver disease. Front Physiol. 2021;12:664100. https://doi.org/10.3389/fphys.2021.664100.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hyun YY, Lee KB, Kim H, et al. Serum creatinine to cystatin C ratio and clinical outcomes in adults with non-dialysis chronic kidney disease. Front Nutr. 2022;9:996674. https://doi.org/10.3389/fnut.2022.996674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Taylor & Francis (www.tandfeditingservices.cn) for the English language editing and presubmission expert review.

Funding

This research was funded by the National Natural Science Foundation of Shandong Province, grant (no. ZR202103040311).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, SB and XJ; methodology, SB, YJ, and XJ; software, SB, XJ, and GG; validation, SB, XJ, and XS; formal analysis, SB, XJ, and XW; investigation, SB and LZ; resources, SB, XJ, and LZ; data curation, SB, LZ, GG, and XJ; writing—original draft preparation, SB and XJ; writing—review and editing, SB, YJ, and XJ; visualization, SB, XW, and XJ; supervision, SB, YJ, and XJ; project administration, SB, XS, and XJ; funding acquisition, XJ. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Xue Jing MD.

Ethics declarations

Disclosure

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical Approval

The study was conducted in accordance with the Declaration of Helsinki and approved by the Clinical Trials Committee (NCT05584852) and the Ethics Committee of the Affiliated Hospital of Qingdao University (QYFYWZLL27348).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, S., Jiang, Y., Guan, G. et al. Prognostic Value of Myosteatosis and Creatinine-to-Cystatin C Ratio in Patients with Pancreatic Cancer Who Underwent Radical Surgery. Ann Surg Oncol 31, 2913–2924 (2024). https://doi.org/10.1245/s10434-024-14969-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-024-14969-8

Keywords

Navigation