Skip to main content

Advertisement

Log in

Targeted Delivery of Nucleic Acid-Based Therapeutics to the Pulmonary Circulation

  • Emerging Drug Delivery Technologies
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Targeted delivery of functional nucleic acids (genes and oligonucleotides) to pulmonary endothelium may become a novel therapy for the treatment of various types of lung diseases. It may also provide a new research tool to study the functions and regulation of novel genes in pulmonary endothelium. Its success is largely dependent on the development of a vehicle that is capable of efficient pulmonary delivery with minimal toxicity. This review summarizes the recent progress that has been made in our laboratory along these research directions. Factors that affect pulmonary nucleic acids delivery are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. R. Dalby, and J. Suman. Inhalation therapy: technological milestones in asthma treatment. Adv. Drug Deliv. Rev. 55:779–791 (2003).

    Article  PubMed  CAS  Google Scholar 

  2. G. Scheuch, M. J. Kohlhaeufl, P. Brand, and R. Siekmeier. Clinical perspectives on pulmonary systemic and macromolecular delivery. Adv. Drug Deliv. Rev. 58:996–1008 (2006).

    Article  PubMed  CAS  Google Scholar 

  3. M. Thomas, J. J. Lu, J. Chen, and A. M. Klibanov. Non-viral siRNA delivery to the lung. Adv. Drug Deliv. Rev. 59:124–133 (2007).

    Article  PubMed  CAS  Google Scholar 

  4. A. Mori, S. J. Kennel, and L. Huang. Immunotargeting of liposomes containing lipophilic antitumor prodrugs. Pharm. Res. 10:507–514 (1993).

    Article  PubMed  CAS  Google Scholar 

  5. S. J. Kennel, T. K. Lankford, L. J. Foote, I. A. Davis, R. A. Boll, and S. Mirzadeh. Combination vascular targeted and tumor targeted radioimmunotherapy. Cancer Biother. Radiopharm. 14:371–379 (1999).

    Article  PubMed  CAS  Google Scholar 

  6. V. Muzykantov, M. Christofidou-Solomidou, I. Balyasnikova, D. Harshaw, L. Schultz, A. Fisher, and S. Albelda. Streptavidin facilitates internalization and pulmonary targeting of anti-endothelial antibody (PECAM-1): a strategy for intraendothelial drug delivery. Proc. Natl. Acad. Sci. USA. 96:2379–2384 (1999).

    Article  PubMed  CAS  Google Scholar 

  7. B. D. Kozower, M. Christofidou-Solomidou, T. D. Sweitzer, S. Muro, D. G. Buerk, C. C. Solomides, S. M. Albelda, G. A. Patterson, and V. R. Muzykantov. Immunotargeting of catalase to the pulmonary endothelium alleviates oxidative stress and reduces acute lung transplantation injury. Nat. Biotechnol. 21:392–398 (2003).

    Article  PubMed  CAS  Google Scholar 

  8. K. Nowak, S. Weih, R. Metzger, R. F. Albrecht II, S. Post, P. Hohenberger, M. M. Gebhard, and S. M. Danilov. Immunotargeting of catalase to lung endothelium via anti-angiotensin-converting enzyme antibodies attenuates ischemia–reperfusion injury of the lung in vivo. Am. J. Physiol. Lung Cell Mol. Physiol. 293:L162–L169 (2007).

    Article  PubMed  CAS  Google Scholar 

  9. S. Li, and Z. Ma. Non-viral gene therapy. Current Gene Therapy. 1:201–226 (2001).

    Article  PubMed  CAS  Google Scholar 

  10. M. Simionescu. Lung endothelium: structure-function correlates. In R. G. Crystal, and J. B. West (eds.), The Lung: Scientific Foundations, Raven, New York, 1991, pp. 301–331.

    Google Scholar 

  11. S. Mukherjee, R. N. Ghosh, and F. R. Maxfield. Endocytosis. Physiol. Rev. 77:759–803 (1997).

    PubMed  CAS  Google Scholar 

  12. M. Simionescu, N. Simionescu, and G. E. Palade. Differentiated microdomains on the luminal surface of capillary endothelium: distribution of lectin receptors. J. Cell Biol. 94:406–413 (1982).

    Article  PubMed  CAS  Google Scholar 

  13. T. Stevens. Molecular and cellular determinants of lung endothelial cell heterogeneity. Chest. 128(6 Suppl):558S–564S (2005).

    Article  PubMed  CAS  Google Scholar 

  14. V. S. Trubeskoy, V. P. Torchilin, S. J. Kennel, and L. Huang. Use of N-terminal modified poly(l-lysin)-antibody conjugate as a carrier for targeted gene delivery in mouse lung endothelial cells. Bioconjug. Chem. 3:323–327 (1992).

    Article  Google Scholar 

  15. S. Li, Y. Tan, E. Viroonchatapan, B. R. Pitt, and L. Huang. Targeted gene delivery to the lung by anti-PECAM antibody. Am. J. Physiol. 278:504–511 (2000).

    Google Scholar 

  16. P. Newman. The biology of PECAM-1. J. Clin. Invest. 99:3–8 (1997).

    Article  PubMed  CAS  Google Scholar 

  17. S. M. Danilov, et al. Lung uptake of antibodies to endothelial antigens: key determinants of vascular immunotargeting. Am. J. Physiol. Lung Cell. Mol. Physiol. 280:1335–1347 (2001).

    Google Scholar 

  18. M. J. Eppihimer, B. Wolitzky, D. C. Anderson, M. A. Labow, and D. N. Granger. Heterogeneity of expression of E- and P-selectins in vivo. Circ. Res. 79:560–569 (1996).

    PubMed  CAS  Google Scholar 

  19. M. S. Diamond, D. E. Staunton, A. R. de Fougerolles, S. A. Stacker, J. Garcia-Aguilar, M. L. Hibbs, and T. A. Springer. ICAM-1 (CD54): a counter-receptor for Mac-1 (CD11b/CD18). J. Cell Biol. 111:3129–3139 (1990).

    Article  PubMed  CAS  Google Scholar 

  20. H. Kataoka, N. Kume, S. Miyamoto, M. Minami, H. Moriwaki, T. Murase, T. Sawamura, T. Masaki, N. Hashimoto, and T. Kita. Expression of lectinlike oxidized low-density lipoprotein receptor-1 in human atherosclerotic lesions. Circulation. 99:3110–3117 (1999).

    PubMed  CAS  Google Scholar 

  21. J. Hao, A. W. Serohijos, G. Newton, G. Tassone, Z. Wang, D. C. Sgroi, N. V. Dokholyan, and J. P. Basilion. Identification and rational redesign of peptide ligands to CRIP1, a novel biomarker for cancers. PLoS. Comput. Biol. 4:e1000138 (2008).

    Article  PubMed  CAS  Google Scholar 

  22. R. H. Yeh, T. R. Lee, and D. S. Lawrence. From consensus sequence peptide to high affinity ligand, a “library scan” strategy. J. Biol. Chem. 276:12235–12240 (2001).

    Article  PubMed  CAS  Google Scholar 

  23. N. W. Morrell, E. N. Atochina, K. G. Morris, S. M. Danilov, and K. R. Stenmark. Angiotensin converting enzyme expression is increased in small pulmonary arteries of rats with hypoxia-induced pulmonary hypertension. J. Clin. Invest. 96:1823–1833 (1995).

    Article  PubMed  CAS  Google Scholar 

  24. J. Wong, R. A. Patel, and P. R. Kowey. The clinical use of angiotensin-converting enzyme inhibitors. Prog. Cardiovasc. Dis. 47:116–130 (2004).

    Article  PubMed  CAS  Google Scholar 

  25. D. R. Hwang, W. C. Eckelman, C. J. Mathias, E. W. Petrillo Jr., J. Lloyd, and M. J. Welch. Positron-labeled angiotensin-converting enzyme (ACE) inhibitor: fluorine-18-fluorocaptopril. Probing the ACE activity in vivo by positron emission tomography. J. Nucl. Med. 32:1730–1737 (1991).

    PubMed  CAS  Google Scholar 

  26. F. Qing, T. J. McCarthy, J. Markham, and D. P. Schuster. . Pulmonary angiotensin-converting enzyme (ACE) binding and inhibition in humans. A positron emission tomography study. Am. J. Respir. Crit. Care Med. 161:2019–2025 (2000).

    PubMed  CAS  Google Scholar 

  27. F. J. Femia, K. P. Maresca, S. M. Hillier, C. N. Zimmerman, J. L. Joyal, J. A. Barrett, O. Aras, V. V. Dilsizian, W. C. Eckelman, and J. W. Babich. Synthesis and evaluation of a series of 99mTc(CO)3+ lisinopril complexes for in vivo imaging of angiotensin-converting enzyme expression. J. Nucl. Med. 49:970–977 (2008).

    Article  PubMed  CAS  Google Scholar 

  28. F. Liu, H. Qi, L. Huang, and D. Liu. Factors controlling the efficiency of cationic lipid-mediated transfection in vivo via intravenous administration. Gene Ther. 4:517–523 (1997).

    Article  PubMed  CAS  Google Scholar 

  29. Y. Liu, L. C. Mounkes, H. D. Liggitt, C. S. Brown, I. Solodin, T. D. Heath, and R. J. Debs. Factors influencing the efficiency of cationic liposome-mediated intravenous gene delivery. Nat. Biotechnol. 15:167–173 (1997).

    Article  PubMed  CAS  Google Scholar 

  30. S. Li, and L. Huang. In vivo gene transfer via intravenous administration of cationic lipid-protamine-DNA (LPD) complexes. Gene Ther. 4:891–900 (1997).

    Article  PubMed  CAS  Google Scholar 

  31. N. S. Templeton, D. D. Lasic, P. M. Frederik, H. H. Strey, D. D. Roberts, and G. N. Pavlakis. Improved DNA: liposome complexes for increased systemic delivery and gene expression. Nat. Biotechnol. 15:167–173 (1997).

    Article  Google Scholar 

  32. J. Wang, X. Guo, Y. Xu, L. Barron, and F. C. Szoka Jr. Synthesis and characterization of long chain alkyl acyl carnitine esters. Potentially biodegradable cationic lipids for use in gene delivery. J. Med. Chem. 41:2207–2215 (1999).

    Article  Google Scholar 

  33. S. Li, W. C. Tseng, D. B. Stolz, S. P. Wu, S. C. Watkins, and L. Huang. Dynamic changes in the characteristics of cationic lipidic vectors after exposure to mouse serum: implications for intravenous lipofection. Gene Ther. 6:585–594 (1999).

    Article  PubMed  CAS  Google Scholar 

  34. A. Y. Nikitin, M. I. Juarez-Perez, S. Li, L. Huang, and W. H Lee. RB-mediated suppression of spontaneous multiple neuroendocrine neoplasia and lung metastases in RB+/- mice. Proceedings of National Academy of Sciences of USA. 96:3916–3921 (1999).

    Article  CAS  Google Scholar 

  35. S. Li, S. P Wu, M. Whitmore, L. Wang, S. Watkins, and L. Huang. Effect of immune response on gene transfer to the lung via systemic administration of cationic lipidic vectors. Am. J. Physiol. 276:796–804 (1999).

    Google Scholar 

  36. Y. Tan, S. Li, B. R. Pitt, and L. Huang. The inhibitory role of CpG immunostimulatory motifs in cationic lipid vector-mediated transgene expression in vivo. Hum. Gene Ther. 10:2153–2161 (1999).

    Article  PubMed  CAS  Google Scholar 

  37. B. D. Freimark, H. P. Blezinger, V. J. Florack, J. L. Nordstrom, S. D Long, D. S. Deshpande, S. Nochumson, and K. L. Petrak. Cationic lipids enhance cytokine and cell influx levels in the lung following administration of plasmid: cationic lipid complexes. J. Immunol. 160:4580–4586 (1998).

    PubMed  CAS  Google Scholar 

  38. N. S. Yew, K. X. Wang, M. Przybylska, R. G. Bagley, M. Stedman, J. Marshall, R. K. Scheule, and S. H. Cheng. Contribution of plasmid DNA to inflammation in the lung after administration of cationic lipid:pDNA complexes. Hum. Gene Ther. 10:223–234 (1999).

    Article  PubMed  CAS  Google Scholar 

  39. S. Li, Y. Tan, E. Viroonchatapan, B. R. Pitt, and L. Huang. Targeted gene delivery to the lung by anti-PECAM antibody. Am. J. Physiol. 278:504–511 (2000).

    Google Scholar 

  40. Y. Tan, F. Liu, Z. Li, S. Li, and L. Huang. Sequential injection of cationic liposome and plasmid DNA effectively transfects the lung with minimal inflammatory toxicity. Molec. Ther. 3:673–682 (2001).

    Article  CAS  Google Scholar 

  41. C. R. Hoffman, J. P. Dileo, Z. Li, S. Li, and L. Huang. Efficient in vivo gene transfer by PCR amplified fragment with reduced inflammatory activity. Gene Ther. 8:71–74 (2001).

    Article  CAS  Google Scholar 

  42. Z. Ma, J. Li, Y. Mu, L. Yang, W. Xie, B. R. Pitt, and S. Li. Inhibition of LPS- and CpG DNA-induced TNF-a response by oxidized phospholipids. Am. J. Physiol.: Lung Cellular Molecular Physiol. 286:808–816 (2004).

    Article  Google Scholar 

  43. G. Y. Wu, and C. H. Wu. Receptor-mediated in vitro gene transformation by a soluble DNA carrier system. J. Biol. Chem. 262:4429–4432 (1987).

    PubMed  CAS  Google Scholar 

  44. O. Boussif, F. Lezoualc’h, M. A. Zanta, M. D. Mergny, D. Scherman, B. Demeneix, and J. P. Behr. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci. USA. 92:7297–7301 (1995).

    Article  PubMed  CAS  Google Scholar 

  45. S. Li, and Z. Ma. Non-viral gene therapy. Current Gene Therapy. 1:201–226 (2001).

    Article  PubMed  CAS  Google Scholar 

  46. X. Gao, K. S. Kim, and D. Liu. Nonviral gene delivery: what we know and what is next. AAPS J. 23:92–104 (2007).

    Article  Google Scholar 

  47. D. Goula, C. Benoist, S. Mantero, G. Merlo, G. Levi, and B. A. Demeneix. Polyethylenimine-based intravenous delivery of transgenes to mouse lung. Gene Ther. 5:1291–1295 (1998).

    Article  PubMed  CAS  Google Scholar 

  48. S. Idell, K. K. James, E. G. Levin, B. S. Schwartz, N. Manchanda, R. J. Maunder, T. R. Martin, J. McLarty, and D. S. Fair. Local abnormalities in coagulation and fibrinolytic pathways predispose to alveolar fibrin deposition in the adult respiratory distress syndrome. J. Clin. Invest. 84:695–705 (1989).

    Article  PubMed  CAS  Google Scholar 

  49. S. Idell. Coagulation, fibrinolysis, and fibrin deposition in acute lung injury. Crit. Care Med. 31:213–220 (2003).

    Article  CAS  Google Scholar 

  50. T. Ikeda, N. Hirose, H. Koto, H. Hirano, and N. Shigematsu. Fibrin deposition and fibrinolysis in the pathogenesis of pulmonary fibrosis. Nippon Kyobu Shikkan Gakkai Zasshi. 27:448–451 (1989).

    PubMed  CAS  Google Scholar 

  51. D. A. Hart, P. Whidden, F. Green, J. Henkin, and D. E. Woods. Partial reversal of established bleomycin-induced pulmonary fibrosis by rh-urokinase in a rat model. Clin. Invest. Med. 17:69–76 (1994).

    PubMed  CAS  Google Scholar 

  52. N. Hattori, T. H. Sisson, Y. Xu, and R. H. Simon. Upregulation of fibrinolysis by adenovirus-mediated transfer of urokinase-type plasminogen activator genes to lung cells in vitro and in vivo. Hum. Gene Ther. 10:215–222 (1999).

    Article  PubMed  CAS  Google Scholar 

  53. T. H. Sisson, N. Hattori, Y. Xu, and R. H. Simon. Treatment of bleomycin-induced pulmonary fibrosis by transfer of urokinase-type plasminogen activator genes. Hum. Gene Ther. 10:2315–23 (1999).

    Article  PubMed  CAS  Google Scholar 

  54. J. Zhang, A. Wilson, S. Alber, Z. Ma, E. Sato, O. Mazda, S. Watkins, L. Huang, B. Pitt, and S. Li. Prolonged gene expression in mouse lung endothelial cells following transfection with Epstein-Barr virus-based episomal plasmid. Gene Ther. 10:822–826 (2003).

    Article  PubMed  CAS  Google Scholar 

  55. X. Q. Wang, K. Bdeir, S. Yarovoi, D. B. Cines, W. Fang, and E. Abraham. Involvement of the urokinase kringle domain in lipopolysaccharide-induced acute lung injury. J. Immunol. 177:5550–5557 (2006).

    PubMed  CAS  Google Scholar 

  56. U. Griesenbach, D. M. Geddes, and E. W. Alton. Gene therapy progress and prospects: cystic fibrosis. Gene Ther. 13:1061–1067 (2006).

    Article  PubMed  CAS  Google Scholar 

  57. P. N. Reynolds, K. R. Zinn, V. D. Gavrilyuk, I. V. Balyasnikova, B. E. Rogers, D. J. Buchsbaum, M. H. Wang, D. J. Miletich, W. E. Grizzle, J. T. Douglas, S. M. Danilov, and D. T. Curiel. A targetable, injectable adenoviral vector for selective gene delivery to pulmonary endothelium in vivo. Mol. Ther. 2:562–578 (2000).

    Article  PubMed  CAS  Google Scholar 

  58. P. N. Reynolds, S. A. Nicklin, L. Kaliberova, B. G. Boatman, W. E. Grizzle, I. V. Balyasnikova, A. H. Baker, S. M. Danilov, and D. T. Curiel. Combined transductional and transcriptional targeting improves the specificity of transgene expression in vivo. Nat. Biotechnol. 19:838–842 (2001).

    Article  PubMed  CAS  Google Scholar 

  59. W. H. Miller, M. J. Brosnan, D. Graham, C. G. Nicol, I. Morecroft, K. M. Channon, S. M. Danilov, P. N. Reynolds, A. H. Baker, and A. F. Dominiczak. Targeting endothelial cells with adenovirus expressing nitric oxide synthase prevents elevation of blood pressure in stroke-prone spontaneously hypertensive rats. Mol. Ther. 12:321–327 (2005).

    Article  PubMed  CAS  Google Scholar 

  60. L. M. Work, H. Büning, E. Hunt, S. A. Nicklin, L. Denby, N. Britton, K. Leike, M. Odenthal, U. Drebber, M. Hallek, and A. H. Baker. Vascular bed-targeted in vivo gene delivery using tropism-modified adeno-associated viruses. Mol. Ther. 13:683–693 (2006).

    Article  PubMed  CAS  Google Scholar 

  61. Z. Ma, Z. Mi, A. Wilson, P. D. Robbins, B. Pitt, and S. Li. Redirecting adenovirus to pulmonary endothelium by cationic liposomes. Gene Ther. 9:176–182 (2002).

    Article  PubMed  CAS  Google Scholar 

  62. Y. K. Song, F. Liu, and D. Liu. Enhanced gene expression in mouse lung by prolonging the retention time of intravenously injected plasmid DNA. Gene Ther. 5:1531–1537 (1998).

    Article  PubMed  CAS  Google Scholar 

  63. Z. Ma, J. Zhang, S. Alber, J. Dileo, D. Stolz, S. C. Watkins, L. Huang, B. R. Pitt, and S. Li. Lipid-mediated delivery of oligonucleotide to pulmonary endothelium. Am. J. Resir Cell Mol. Biol. 27:151–159 (2002).

    CAS  Google Scholar 

  64. T. M. Allen. Liposomal drug formulations. Rationale for development and what we can expect for the future. Drugs. 56:747–756 (1998).

    Article  PubMed  CAS  Google Scholar 

  65. M. Hussein. Pegylated liposomal doxorubicin, vincristine, and reduced-dose dexamethasone as first-line therapy for multiple myeloma. Clin. Lymphoma. 1:S18–S22 (2003).

    Article  Google Scholar 

  66. R. Herbrecht, S. Natarajan-Ame, Y. Nivoix, and V. Letscher-Bru. The lipid formulations of amphotericin B. Expert Opin. Pharmacother. 4:1277–1287 (2003).

    Article  PubMed  CAS  Google Scholar 

  67. D. D. Stuart, S. C. Semple, and T. M. Allen. High efficiency entrapment of antisense oligonucleotides in liposomes. Methods Enzymol. 387:171–188 (2004).

    Article  PubMed  CAS  Google Scholar 

  68. S. C. Semple, S. K. Klimuk, T. O. Harasym, N. Dos Santos, S. M. Ansell, K. F. Wong, N. Mauer, H. Stark, P. R. Cullis, M. J. Hope, and P. Scherrer. Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures. Biochim. Biophys. Acta. 1510:152–166 (2001).

    Article  PubMed  CAS  Google Scholar 

  69. A. Wilson, W. Zhou, H. Champion, S. Alber, Z.-L. Tang, S. Kennel, S. Watkins, L. Huang, B. R. Pitt, and S. Li. Targeted delivery of oligodeoxynucleotides to mouse lung endothelial cells in vitro and in vivo. Molec. Ther. 12:510–518 (2005).

    Article  CAS  Google Scholar 

  70. E. L. Schiffrin. Vascular endothelin in hypertension. Vascul Pharmacol. 43:19–29 (2005).

    Article  PubMed  CAS  Google Scholar 

  71. W. Zhou, X. Yuan, A. Wilson, L. Yang, M. Mokotoff, B. R. Pitt, and S. Li. Efficient intracellular delivery of oligonucleotides formulated in folate receptor-targeted lipid vesicles. Bioconjug. Chem. 13:1220–1225 (2002).

    Article  PubMed  CAS  Google Scholar 

  72. L. Yang, J. Li, W. Zhou, X. Yuan, and S. Li. Targeted delivery of antisense oligodeoxy-nucleotides to folate receptor-overexpressing tumor cells. J. Control. Release. 95:321–331 (2004).

    Article  PubMed  CAS  Google Scholar 

  73. W. Li, and F. C. Szoka Jr. Lipid-based nanoparticles for nucleic acid delivery. Pharm Res. 24:438–449 (2007).

    Article  PubMed  CAS  Google Scholar 

  74. E. Rytting, J. Nguyen, X. Wang, and T. Kissel. Biodegradable polymeric nanocarriers for pulmonary drug delivery. Expert Opin. Drug Deliv. 5:629–639 (2008).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by National Institutes of Health Grants HL-63080 and HL-68688 and by American Heart Association Grant 026540U.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuruba, R., Wilson, A., Gao, X. et al. Targeted Delivery of Nucleic Acid-Based Therapeutics to the Pulmonary Circulation. AAPS J 11, 23–30 (2009). https://doi.org/10.1208/s12248-008-9073-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-008-9073-0

Key words

Navigation