Skip to main content
Log in

Liposomal Drug Formulations

Rationale for Development and What We Can Expect for the Future

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Liposomes are versatile drug carriers which can be used to solve problems of drug solubility, instability and rapid degradation. Both hydrophilic and hydrophobic drugs can be associated with liposomes and special techniques have been developed for the efficient loading of weak acids and weak bases into liposomes.

Liposomes can function as sustained release systems for drugs and the rate of release can be manipulated. Advantage can be taken of the substantial changes in pharmacokinetics which often accompanies the association of drugs with liposomes. New formulations of liposomes, sterically stabilised with substances like surface-grafted polyethylene glycol have circulating half-lives in humans of up to 2 days. These long circulation times allow concentration of liposomal drug in regions of increased vascular permeability like solid tumours an decreased delivery of drug to normal tissues. Alterations of the biodistribution of drugs, when they are liposomes-associated, in general leads to significant overall decreases in drug toxicity but can also increase toxicity in some tissues. The use of targeting ligands to increase the selectivity of delivery of liposomal drugs to target tissues is currently under development. An understanding of how liposome association can alter drug properties can lead to their rational development in the treatment of many diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Allen TM. Liposomal drug delivery. Curr Opin Colloid Interface Sci 1996; 1: 645–51

    Article  CAS  Google Scholar 

  2. Sharma A, Sharma US. Liposomes in drug delivery: progress and limitations. Int J Pharm 1997; 154: 123–40

    Article  CAS  Google Scholar 

  3. Casper ES, Schwartz GK, Sugarman A, et al. Phase I trial of dose-intense liposome-encapsulated doxorubicin in patients with advanced sarcoma. J Clin Oncol 1997; 15(5): 2111–7

    PubMed  CAS  Google Scholar 

  4. Muggia F, Hainsworth JD, Jeffers S, et al. Phase II study of liposomal doxorubicin in refractory ovarian cancer: antitumor activity and toxicity modification by liposomal encapsulation. J Clin Oncol 1997; 15: 987–93

    PubMed  CAS  Google Scholar 

  5. Ranson M, Howell A, Cheeseman S, et al. Liposomal drug delivery. Cancer Treat Rev 1996; 22: 365–79

    Article  PubMed  CAS  Google Scholar 

  6. Woodle MC, Storm G, editors. Long-circulating Liposomes: old drugs, new therapeutics. Georgetown (TX): Landes Bioscience, 1998

    Google Scholar 

  7. Wasan KM, Lopez-Berenstein G. The past, present and future uses of liposomes in treating infectious diseases. Immuno-pharmacol Immunotoxicol 1995; 17: 1–15

    Article  CAS  Google Scholar 

  8. Abraham E, Park YC, Covington P, et al. Liposomal prostaglandin E(1) in acute respiratory distress syndrome: a placebo-controlled, randomized, double-blind, multicenter clinical trial. Crit Care Med 1996; 24(1): 10–5

    Article  PubMed  CAS  Google Scholar 

  9. Deol P, Khuller GK. Lung specific stealth liposomes: stability, biodistribution and toxicity of liposomal antitubercular drugs in mice. Biochim Biophys Acta 1997; 1334: 161–72

    Article  PubMed  CAS  Google Scholar 

  10. Dipali SR, Lin Y-J, Ravis WR, et al. Pharmacokinetics and tissue distribution of long circulating liposomal formulation of 2′,3′ dideoxyinosine. Int J Pharm 1997; 152: 89–97

    Article  CAS  Google Scholar 

  11. Defrise-Quertain F, Chatelain P, Delmelle M, et al. Model studies for drug entrapment and liposome stability. In: Gregoriadis G, editor. Liposome technology. Vol. 2. 1st ed. Boca Raton (FL): CRC Press Inc., 1984: 1–17

    Google Scholar 

  12. Allen TM, Mehra T, Hansen CB, et al. Stealth liposomes: an improved sustained release system for 1-β-D-arabino-furanosylcytosine. Cancer Res 1992; 52: 2431–9

    PubMed  CAS  Google Scholar 

  13. Perez-Soler R, Francis K, ai-Baker S, et al. Preparation and characterization of liposomes containing a lipophilic cisplatin derivative for clinical use. J Microencapsul 1994; 11(1): 41–54

    Article  PubMed  CAS  Google Scholar 

  14. Perez-Soler R, Neamati N, Zou Y, et al. Annamycin circumvents resistance mediated by the multidrug resistance-associated protein (MRP) in breast MCF-7 small-cell lung UMCC-1 cancer cell lines selected for resistance to etoposide. Int J Cancer 1997; 71: 35–41

    Article  PubMed  CAS  Google Scholar 

  15. Perez-Soler R, Shin DM, Siddik ZH, et al. Phase I clinical and pharmacological study of liposome-entrapped NPDP administered intrapleurally in patients with malignant pleural effusions. Clin Cancer Res 1997; 3: 373–9

    PubMed  CAS  Google Scholar 

  16. Haran G, Cohen R, Bar LK, et al. Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochim Biophys Acta 1993; 1151: 201–15

    Article  PubMed  CAS  Google Scholar 

  17. Cullis PR, Hope MJ, Bally MB, et al. Influence of pH gradients on the transbilayer transport of drugs, lipids, peptides and metal ions into large unilamellar liposomes. Biochim Biophys Acta 1997; 1331: 187–211

    Article  PubMed  CAS  Google Scholar 

  18. Gabizon A, Catane R, Uziely B, et al. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res 1994; 54: 987–92

    PubMed  CAS  Google Scholar 

  19. Cevc G, editor. Phospholipids handbook. New York (NY): Marcel Dekker Inc., 1993

    Google Scholar 

  20. Sharma A, Straubinger RM. Novel taxol formulations, preparation and characterization of taxol-containing liposomes. Pharm Res 1994; 11: 889–96

    Article  PubMed  CAS  Google Scholar 

  21. Bernard E, Dubois J-L, Wepierre J. Importance of sebaceous glands in cutaneous penetration of an antiandrogen: target effect of liposomes. J Pharm Sci 1997; 86: 573–8

    Article  PubMed  CAS  Google Scholar 

  22. Reddi E. Role of delivery vehicle for photosensitizers in the photodynamic therapy of tumours. J Photochem Photobiol 1997; 37: 189–95

    Article  CAS  Google Scholar 

  23. Borsa J, Whitmore GF, Valeriote FA, et al. Studies on the persistence of methotrexate, cytosine arabinoside, and leucovorin in serum of mice. J Natl Cancer Inst 1969; 42(2): 235–42

    PubMed  CAS  Google Scholar 

  24. Burke TG, Gao X. Stabilization of topotecan in low pH liposomes composed of distearoylphosphatidylcholine. J Pharm Sci 1994; 83(7): 967–9

    Article  PubMed  CAS  Google Scholar 

  25. ’t Hart BA, Elferink DG, Frijfhout JW, et al. Liposome-mediated peptide loading of MHC-DR molecules in. vivo. FEBS Lett 1997; 409: 91–5

    Article  Google Scholar 

  26. ten Hagen TLM, Eggermont AMM. A rat extremity soft tissue sarcoma model for the study of systemic treatment with Stealth liposome-encapsulated tumor necrosis factor-α and cytotoxic agents. Adv Drug Del Rev 1997; 24: 245–56

    Article  Google Scholar 

  27. Khanna C, Anderson PM, Hasz DE, et al. Interleukin-2 liposome inhalation therapy is safe and effective for dogs with spontaneous pulmonary metastases. Cancer 1997; 79: 1409–21

    Article  PubMed  CAS  Google Scholar 

  28. Allen TM. A study of phospholipid interactions between high-density lipoproteins and small unilamellar vesicles. Biochim Biophys Acta 1981; 640: 385–97

    Article  PubMed  CAS  Google Scholar 

  29. Scherphof GL, Damen J, Wilschut, J. Interactions of liposomes with plasma proteins. In: Gregoriadis G, editor. Liposome technology. Vol. 2.1st ed. Boca Raton (FL): CRC Press, 1984: 205–24

    Google Scholar 

  30. Wasan KM, Morton RE. Differences in lipoprotein concentration and composition modify the plasma distribution of free and liposomal annamycin. Pharm Res 1996; 13: 462–8

    Article  PubMed  CAS  Google Scholar 

  31. Horowitz AT, Barenholz Y, Gabizon AA. In vitro cytotoxicity of liposome-encapsulated doxorubicin: dependence on liposome composition and drug release. Biochim Biophys Acta 1992; 1109: 203–9

    Article  PubMed  CAS  Google Scholar 

  32. Allen TM, Newman MS, Woodle MC, et al. Pharmacokinetics and anti-tumor activity of vincristine encapsulated in sterically stabilized liposomes. Int J Cancer 1995; 62: 199–204

    Article  PubMed  CAS  Google Scholar 

  33. Lim HJ, Masin D, Madden TD, et al. Influence of drug release characteristics on the therapeutic activity of liposomal mitoxantrone. J Pharmacol Exp Ther 1997; 281: 566–73

    PubMed  CAS  Google Scholar 

  34. Chu CJ, Szoka C. pH-sensitive liposomes. J Liposome Res 1991; 4: 361–95

    Article  Google Scholar 

  35. Srinath P, Jain NK. Signal sensitive liposomes. Indian Drugs 1994; 31(7): 284–90

    CAS  Google Scholar 

  36. Boman NL, Masin D, Mayer LD, et al. Liposomal vincristine which exhibits increased drug retention and increased circulation longevity cures mice bearing P388 tumors. Cancer Res 1994; 54: 2830–3

    PubMed  CAS  Google Scholar 

  37. Kirpotin D, Hong K, Mullah N, et al. Liposomes with detachable polymer coating: destabilization and fusion of dioleoyl-phosphatidylethanolamine vesicles triggered by cleavage of surface-grafted poly(ethylene glycol). FEBS Lett 1996; 388: 115–8

    Article  PubMed  CAS  Google Scholar 

  38. Wu NZ, Braun RD, Gaber MH, et al. Simultaneous measurement of liposome extravasation and content release in tumors. Microcirculation 1997; 4(1): 83–101

    Article  PubMed  CAS  Google Scholar 

  39. Thierry AR, Vige D, Couglin SS, et al. Modulation of doxorubicin resistance in multidrug resistant cells by liposomes. FASEB J 1993; 7: 572–9

    PubMed  CAS  Google Scholar 

  40. Sharma A, Mayhew E, Straubinger RM. Antitumor effect of taxol-containing liposomes in a taxol-resistant murine tumor model. Cancer Res 1993; 53(24): 5877–81

    PubMed  CAS  Google Scholar 

  41. Suzuki S, Inoue K, Hongoh A, et al. Modulation of doxorubicin resistance in a doxorubicin-resistant human leukaemia cell by an immunoliposome targeting transferrin receptor. Br J Cancer 1997; 76(1): 83–9

    Article  PubMed  CAS  Google Scholar 

  42. Pecheur EI, Hoekstra D, Sainte-Marie J, et al. Membrane anchorage brings about fusogenic properties in a short synthetic peptide. Biochemistry 1997; 36: 3773–81

    Article  PubMed  CAS  Google Scholar 

  43. Hwang KJ. Liposome pharmacokinetics. In: Ostro MJ, editor. Liposomes: from biophysics to therapeutics. New York (NY): Marcel Dekker, 1987: 109–56

    Google Scholar 

  44. Allen TM, Hansen CB, Lopes de Menezes DE. Pharmacokinetics of long circulating liposomes. Adv Drug Del Rev 1995; 16: 267–84

    Article  CAS  Google Scholar 

  45. Scherphof GL, Velinova M, Kamps J, et al. Modulation of pharmacokinetic behavior of liposomes. Adv Drug Del Rev 1997; 24: 179–91

    Article  CAS  Google Scholar 

  46. Alving CR, Steck EA, Chapman WLJ, et al. Therapy of leishmaniasis: superior efficacies of liposome-encapsulated drugs. Proc Natl Acad Sci U S A 1978; 75(6): 2959–63

    Article  PubMed  CAS  Google Scholar 

  47. Allen TM. The use of glycolipids and hydrophilic polymers in avoiding rapid uptake of liposomes by the mononuclear phagocyte system. Adv Drag Del Rev 1994; 13: 285–309

    Article  CAS  Google Scholar 

  48. Torchilin VP, Trubetskoy VS. Use of polyoxyethylene-lipid conjugates as long-circulating carriers for delivery of therapeutic and diagnostic agents. Adv Drag Del Rev 1995; 16: 141–55

    Article  CAS  Google Scholar 

  49. Ceh B, Winterhalter M, Frederik PM, et al. Stealth liposomes: from theory to product. Adv Drag Del Rev 1997; 24: 165–77

    Article  CAS  Google Scholar 

  50. Mezei M. Liposomes and the skin. In: Gregoriadis G, Florence AT, Patel MH, editors. Liposomes in drag delivery. Yverdon, Switzerland: Harwood Academic, 1993: 125–35

    Google Scholar 

  51. Cevc G. Transfersomes, liposomes and other lipid suspensions on the skin: permeation, enhancement, vesicle penetration, and transdermal drag delivery. Crit Rev Ther Drug Carrier Syst 1996; 13: 257–388

    Article  PubMed  CAS  Google Scholar 

  52. Young AM, Gregoriadis G. Photolysis of retinol in liposomes and its protection with tocopherol and oxybenzone. Photochem Photobiol 1996; 63(3): 344–52

    Article  PubMed  CAS  Google Scholar 

  53. Chen H, Langer R. Magnetically-responsive polymerized liposomes as potential oral delivery vehicles. Pharm Res 1997; 14(4): 537–40

    Article  PubMed  CAS  Google Scholar 

  54. Kakinuma K, Tanaka R, Takahashi H, et al. Targeting chemotherapy for malignant brain tumor using thermosensitive liposome and localized hyperthermia. J Neurosurg 1996; 84(2): 180–4

    Article  PubMed  CAS  Google Scholar 

  55. Siegal T, Horowitz A, Gabizon A. Doxorubicin encapsulated in sterically stabilized liposomes for the treatment of a brain tumor model: biodistribution and therapeutic efficacy. J Neurosurgery 1995; 83(6): 1029–37

    Article  CAS  Google Scholar 

  56. Khalifa A, Dodds D, Rampling R, et al. Liposomal distribution in malignant glioma: possibilities for therapy. Nucl Med Commun 1997; 18: 17–23

    Article  PubMed  CAS  Google Scholar 

  57. Boman NL, Tron VA, Bally MB, et al. Vincristine-induced dermal toxicity is significantly reduced when the drug is given in liposomes. Cancer Chemother Pharmacol 1996; 37(4): 351–5

    Article  PubMed  CAS  Google Scholar 

  58. Uziely B, Jeffers S, Isacson R, et al. Liposomal doxorubicin: antitumor activity and unique toxicities during two complementary phase I studies. J Clin Oncol 1995; 13: 1777–85

    PubMed  CAS  Google Scholar 

  59. Northfelt DW, Martin FJ, Working P, et al. Doxorubicin encapsulated in liposomes containing surface-bound polyethylene glycol: pharmacokinetics, tumour localization, and safety in patients with AIDS-related Kaposi’s sarcoma. J Clin Pharmacol 1996; 36: 55–63

    PubMed  CAS  Google Scholar 

  60. Forssen EA. The design and development of DaunoXomeR for solid tumor targeting in vivo. Adv Drug Del Rev 1997; 24: 133–50

    Article  CAS  Google Scholar 

  61. Allen TM. Toxicity of drug carriers to the mononuclear phagocyte system. Adv Drug Del Deliv 1988; 2: 55–67

    Article  CAS  Google Scholar 

  62. Parr MJ, Bally MB, Cullis PR. The presence of GM1 in liposomes with entrapped doxorubicin does not prevent RES blockade. Biochim Biophys Acta 1993; 1168: 239–52

    Article  Google Scholar 

  63. Amantea MA, Forrest A, Northfelt DW, et al. Population pharmacokinetics and pharmacodynamics of pegylated-liposomal doxorubicin in patients with AIDS-related Kaposi’s sarcoma. Clin Pharmacol Therap 1997; 61(3): 301–11

    Article  CAS  Google Scholar 

  64. Goebel F-D, Goldstein D, Goos M, et al. Efficacy and safety of Stealth® liposomal doxorubicin in AIDS-related Kaposi’s sarcoma. Br J Cancer 1996; 73: 989–94

    Article  PubMed  CAS  Google Scholar 

  65. Wu NZ, Da D, Rudoll TL, et al. Increased microvascular permeability contributes to preferential accumulation of stealth liposomes in tumour tissue. Cancer Res 1993; 53: 3765–70

    PubMed  CAS  Google Scholar 

  66. Bakker-Woudenberg IAJM, Storm G, Woodle MC. Liposomes in the treatment of infections. J Drug Target 1994; 2: 363–71

    Article  PubMed  CAS  Google Scholar 

  67. Unezaki S, Maruyama K, Hosoda J-I, et al. Direct measurement of the extravasation of polyethyleneglycol-coated liposomes into solid tumor tissue by in vivo fluorescence microscopy. Int J Pharm 1996; 144: 11–7

    Article  CAS  Google Scholar 

  68. Gabizon A, Goren D, Horowitz AT, et al. Long-circulating liposomes for drug delivery in cancer therapy: a review of biodistribution studies in tumor-bearing animals. Adv Drug Del Rev 1997; 24: 337–44

    Article  CAS  Google Scholar 

  69. Bakker-Woudenberg IA, ten Kate MT, Stearne-Cullen LE, et al. Efficacy of gentamicin or ceftazidime entrapped in liposomes with prolonged blood circulation and enhanced localization in Klebsiella pneumoniae-infected lung tissue. J Infect Dis 1995; 171: 938–47

    Article  PubMed  CAS  Google Scholar 

  70. Allen TM, Moase EH. Therapeutic opportunities for targeted liposomal drug delivery. Adv Drag Del Rev 1996; 21: 117–33

    Article  CAS  Google Scholar 

  71. MacLean AL, Symonds G, Ward R. Immunoliposomes as targeted delivery vehicles for cancer therapeutics. Int J Oncol 1997; 11: 325–32

    PubMed  CAS  Google Scholar 

  72. Lopes de Menezes DE, Pilarski LM, Allen TM. In vitro and in vivo targeting of immunoliposomal doxorubicin to human B-cell lymphoma. Cancer Res 1998; 58: 3320–30

    PubMed  CAS  Google Scholar 

  73. Kersten GFA, Crommelin DJA. Liposomes and ISCOMS as vaccine formulations. Biochim Biophys Acta 1995; 124(12): 117–38

    Google Scholar 

  74. Huang L, Li S. Liposomal gene delivery: a complex package. Nature Biotech 1997; 15: 620–1

    Article  CAS  Google Scholar 

  75. Mahato RI, Takakura Y, Hasida M. Nonviral vectors for in vivo gene delivery: physicochemical and pharmacokinetic considerations. Crit Rev Ther Drag CarrierSyst 1997; 14(2): 133–72

    CAS  Google Scholar 

  76. Feigner PL. Nonviral strategies for gene therapy. Sci Am 1997 June; 102–10

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theresa M. Allen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allen, T.M. Liposomal Drug Formulations. Drugs 56, 747–756 (1998). https://doi.org/10.2165/00003495-199856050-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199856050-00001

Keywords

Navigation