Skip to main content
Log in

Hypothetical superparamagnetic magnetometer in a pigeon’s upper beak probably does not work

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

An Erratum to this article was published on 30 August 2013

Abstract

We reanalysed the role of superparamagnetic magnetite clusters observed in a pigeon’s upper beak to decide if this matter can be a component of some sort of pigeon magnetometer for Earth orientation. We investigated the mutual interaction of the magnetite clusters induced by the geomagnetic field. The force sensitivity of the hypothetical magnetometer in a pigeon’s upper beak was estimated considering the previously presented threshold magnetic sensitivity of pigeons, measured in electrophysiological and behavioural investigations. The typical intercluster magnetic force seems to be 10−19N well above the threshold magnetic sensitivity. To strengthen our results, we measured the magnetic susceptibility of superparamagnetic magnetite using a vibrating sample magnetometer. Finally we performed theoretical kinematic analysis of the motion of magnetite clusters in cell plasma. The results indicate that magnetite clusters, constituted by superparamagnetic nanoparticles and observed in a pigeon’s upper beak, may not be a component of a measuring system providing the magnetic map.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Wiltschko, R. Wiltschko, Science 176, 62 (1972).

    Article  ADS  Google Scholar 

  2. W. Wiltschko, R. Wiltschko, J. Exp. Biol. 199, 29 (1996).

    Article  Google Scholar 

  3. C. Walcott, J. Exp. Biol. 199, 21 (1996).

    Google Scholar 

  4. C.V. Mora et al., Nature 432, 508 (2004).

    Article  ADS  Google Scholar 

  5. M.M. Walker et al., Nature 390, 371 (1997).

    Article  ADS  Google Scholar 

  6. M. Winklhofer, J. R. Soc. Interface 7, S131 (2010).

    Article  Google Scholar 

  7. K.J. Lohmann, Nature 464, 1140 (2010).

    Article  ADS  Google Scholar 

  8. L.J. Gould, Nature 296, 205 (1982).

    Article  ADS  Google Scholar 

  9. J.L. Kirschvink, M. Winklhofer, M.M. Walker, J. R. Soc. Interface 7, S179 (2010).

    Article  Google Scholar 

  10. D. Faivre, D. Schuler, Chem. Rev. 108, 4875 (2008).

    Article  Google Scholar 

  11. W. Wiltschko, R. Wiltschko, J. Ornithol 148, S61 (2007).

    Article  Google Scholar 

  12. M. Hanzlik et al., Biometals 13, 325 (2000).

    Article  Google Scholar 

  13. G. Fleissner et al., J. Ornithol. 148, S643 (2007).

    Article  Google Scholar 

  14. G. Fleissner et al., J. Comp. Neurol. 458, 350 (2003).

    Article  Google Scholar 

  15. G. Fleissner et al., Naturwiss. 94, 631 (2007).

    Article  ADS  Google Scholar 

  16. G. Falkenberg et al., Plos. One 5, (2010).

  17. R. Wiltschko et al., Curr. Biol. 20, 1534 (2010).

    Article  Google Scholar 

  18. R.C. Beason, P. Semm, J. Exp. Biol. 199, 1241 (1996).

    Google Scholar 

  19. C.D. Treiber et al., Nature 484, 367 (2012).

    ADS  Google Scholar 

  20. M. Zapka et al., Nature 461, 1274 (2009).

    Article  ADS  Google Scholar 

  21. T. Ritz et al., J. R. Soc. Interface 7, S135 (2010).

    Article  Google Scholar 

  22. R. Wiltschko et al., Human Front. Sci. Prog. J. 1, 41 (2007).

    Google Scholar 

  23. S.H.K. Eder et al., Proc. Natl. Acad. Sci. U.S.A. 109, 12022 (2012).

    Article  ADS  Google Scholar 

  24. V.P. Shcherbakov, M. Winklhofer, Phys. Rev. E 81, 031921 (2010).

    Article  ADS  Google Scholar 

  25. M. Winklhofer, J.L. Kirschvink, arXiv:0805.2249vl (2008).

  26. I. Safarik, M. Safarikova, Monatsh. Chem. 133, 737 (2002).

    Article  Google Scholar 

  27. A.F. Davila et al., Phys. Chem. Earth 28, 647 (2003).

    Article  Google Scholar 

  28. V.P. Shcherbakov, M. Winklhofer, Eur. Biophys. J. 28, 380 (1999).

    Article  Google Scholar 

  29. I.A. Solov’yov, W. Greiner, Biophys. J. 93, 1493 (2007).

    Article  ADS  Google Scholar 

  30. M. Winklhofer et al., Eur. J. Mineral. 13, 659 (2001).

    Article  Google Scholar 

  31. I.A. Solov’yov, W. Greiner, Phys. Rev. E 80, 1 (2009).

    Google Scholar 

  32. I.A. Solov’yov, W. Greiner, Eur. Phys. J. D 51, 161 (2009).

    Article  ADS  Google Scholar 

  33. A.F. Davila et al., Biophys. J. 89, 56 (2005).

    Article  ADS  Google Scholar 

  34. M. Winklhofer, J.L. Kirschvink, J. R. Soc. Interface 7, S273 (2010).

    Article  Google Scholar 

  35. H. Zhang, M. Widom, Phys. Rev. E 51, 2099 (1995).

    Article  ADS  Google Scholar 

  36. H. Cadiou, P.A. McNaughton, J. R. Soc. Interface 7, S193 (2010).

    Article  Google Scholar 

  37. M. Korte, C.G. Constable, Earth Planet Sci. Lett. 236, 348 (2005).

    Article  ADS  Google Scholar 

  38. A.C. Fraser-Smith, Rev. Geophys. 25, 1 (1987).

    Article  ADS  Google Scholar 

  39. J.P. Ge et al., Angew. Chem. Int. Edit. 46, 4342 (2007).

    Article  Google Scholar 

  40. J.J. Abbott et al., IEEE T. Robot. 23, 1247 (2007).

    Article  Google Scholar 

  41. J.A. Osborn, Phys. Rev. 67, 351 (1945).

    Article  ADS  Google Scholar 

  42. C.H. Ahn et al., J. Microelectromech. Syst. 5, 151 (1996).

    Article  Google Scholar 

  43. P. Poulin, V. Cabuil, D.A. Weitz, Phys. Rev. Lett. 79, 4862 (1997).

    Article  ADS  Google Scholar 

  44. K.W. Yung, P.B. Landecker, D.D. Villani, Magn. electr. Separ. 9, 39 (1998).

    Article  Google Scholar 

  45. G.P. Hatch, R.E. Stelter, J. Magn. & Magn. Mater. 225, 262 (2001).

    Article  ADS  Google Scholar 

  46. R.C. Beason, Integr. Comp. Biol. 45, 565 (2005).

    Article  Google Scholar 

  47. M.M. Walker, T.E. Dennis, J.L. Kirschvink, Curr. Opin. Neurobiol. 12, 735 (2002).

    Article  Google Scholar 

  48. J.L. Gould, Curr. Biol. 20, R431 (2010).

    Article  Google Scholar 

  49. L.Q. Wu, J.D. Dickman, Science 336, 1054 (2012).

    Article  ADS  Google Scholar 

  50. A.R. Muxworthy, W. Williams, J. R. Soc. Interface 6, 1207 (2009).

    Article  Google Scholar 

  51. C.T. Yavuz et al., Science 314, 964 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Jandačka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jandačka, P., Alexa, P., Pištora, J. et al. Hypothetical superparamagnetic magnetometer in a pigeon’s upper beak probably does not work. Eur. Phys. J. E 36, 40 (2013). https://doi.org/10.1140/epje/i2013-13040-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2013-13040-1

Keywords

Navigation