Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure and function of the vertebrate magnetic sense

Abstract

Some vertebrates can navigate over long distances using the Earth's magnetic field, but the sensory system that they use to do so has remained a mystery. Here we describe the key components of a magnetic sense underpinning this navigational ability in a single species, the rainbow trout ( Oncorhynchus mykiss). We report behavioural and electrophysiological responses to magnetic fields and identify an area in the nose of the trout where candidate magnetoreceptor cells are located. We have tracked the sensory pathway from these newly identified candidate magnetoreceptor cells to the brain and associated the system with a learned response to magnetic fields.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Discrimination of the presence and absence of a magnetic anomaly by rainbow trout.
Figure 2: Electrophysiological responses to magnetic fields.
Figure 3: Detection of intracellular magnetite.
Figure 4: Three steps in a 270° rotation series of a three-dimensional volume-rendered image stack showing the path of a nerve process (right of dashed line) as it enters the top of a lamella.
Figure 5: Optical slices showing two different branching patterns of DiI-labelled nerve processes entering trout olfactory lamellae.
Figure 6: Schematic diagram of the innervation of the head region and nasal capsule of the trout by the SOt branch of the ros V.

Similar content being viewed by others

References

  1. Wiltschko, R. & Wiltschko, W. Magnetic Orientation in Animals(Springer, Berlin, (1995)).

    Book  Google Scholar 

  2. Leask, M. J. M. Aphysicochemical mechanism for magnetic field detection by migratory birds and homing pigeons. Nature 267, 144–145 (1977).

    Article  ADS  CAS  Google Scholar 

  3. Phillips, J. B. & Borland, S. C. Behavioural evidence for use of a light-dependent magnetoreception mechanism in a vertebrate. Nature 359, 142–144 (1992).

    Article  ADS  Google Scholar 

  4. Kalmijn, A. J. Biophysics of geomagnetic field detection. IEEE Trans. Magn. 17, 1113–1124 (1981).

    Article  ADS  Google Scholar 

  5. Gould, J. L., Kirschvink, J. L. & Deffeyes, K. D. Bees have magnetic remanence. Science 201, 1026–1028 (1978).

    Article  ADS  CAS  Google Scholar 

  6. Walcott, C., Gould, J. L. & Kirschvink, J. L. Pigeons have magnets. Science 205, 1027–1029 (1979).

    Article  ADS  CAS  Google Scholar 

  7. Lohmann, K. J. & Lohmann, C. M. F. Detection of magnetic field intensity by sea turtles. Nature 380, 59–61 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Quinn, T. P., Merrill, R. T. & Brannon, E. L. Magnetic field detection in sockeye salmon. J. Exp. Zool. 217, 137–142 (1981).

    Article  Google Scholar 

  9. Lohmann, K. J. et al . Magnetic orientation of spiny lobsters in the ocean: Experiments with undersea coil systems. J. Exp. Biol. 198, 2041–2048 (1995).

    CAS  PubMed  Google Scholar 

  10. Kirschvink, J. L. & Gould, J. L. Biogenic magnetite as a basis for magnetic field detection in animals. Biosystems 13, 181–201 (1981).

    Article  CAS  Google Scholar 

  11. Yorke, E. D. Apossible magnetic transducer in birds. J. Theor. Biol. 89, 533–537 (1979).

    Article  Google Scholar 

  12. Walker, M. M. & Bitterman, M. E. Attached magnets disrupt magnetic field discrimination by honeybees. J. Exp. Biol. 141, 447–451 (1989).

    Google Scholar 

  13. Wiltschko, W., Munro, U., Beason, R. C., Ford, H. & Wiltschko, R. Amagnetic pulse leads to a temporary deflection in the orientation of migratory birds. Experientia 50, 697–700 (1994).

    Article  Google Scholar 

  14. Beason, R. C., Dussourd, N. & Deutschlandeer, M. E. Behavioural evidence for the use of magnetic material in magnetoreception by a migratory bird. J. Exp. Biol. 198, 141–146 (1995).

    CAS  PubMed  Google Scholar 

  15. Kreithen, M. L. & Keeton, W. T. Attempts to condition homing pigeons to magnetic stimuli. J. Comp. Physiol A 91, 355–362 (1974).

    Article  Google Scholar 

  16. Woodard, W. T. & Bitterman, M. E. Adiscrete trials/fixed-interval method of discrimination training. Behav. Res. Meth. Instr. 6, 389–392 (1974).

    Article  Google Scholar 

  17. Mann, S., Sparks, N. H. C., Walker, M. M. & Kirschvink, J. L. Ultrastructure, morphology and organization of biogenic magnetite from sockeye salmon, Oncorhynchus nerka : Implications for magnetoreception. J. Exp. Biol. 140, 35–49 (1988).

    CAS  PubMed  Google Scholar 

  18. Walker, M. M. Learned magnetic field discrimination in the yellowfin tuna, Thunnus albacares . J. Comp. Physiol. A 155, 673–679 (1984).

    Article  Google Scholar 

  19. Walker, M. M. & Bitterman, M. E. Conditioned responding to magnetic fields by honeybees. J. Comp. Physiol. A 157, 67–71 (1985).

    Article  Google Scholar 

  20. Walker, M. M., Baird, D. L. & Bitterman, M. E. Failure of stationary but not of flying honeybees to respond to magnetic field stimuli. J. Comp. Psychol. 103, 62–69 (1989).

    Article  Google Scholar 

  21. Carman, G. J., Walker, M. M. & Lee, A. K. Attempts to demonstrate magnetic discrimination by homing pigeons in flight. Anim. Learn. Behav. 15, 124–129 (1987).

    Article  Google Scholar 

  22. Kirschvink, J. L. Magnetite biomineralization and geomagnetic sensitivity in animals: An update and recommendations for future study. Bioelectromagnetics 10, 239–259 (1989).

    Article  CAS  Google Scholar 

  23. Moore, A., Freake, S. M. & Thomas, I. M. Magnetic particles in the lateral line of the Atlantic salmon ( Salmo salar L). Phil. Trans. R. Soc. Lond. B 329, 11–15 (1990).

    Article  ADS  Google Scholar 

  24. Puzdrowski, R. L. Afferent projections of the trigeminal nerve in the goldfish, Carassius auratus . J. Morphol. 198, 131–147 (1988).

    Article  CAS  Google Scholar 

  25. Blakemore, R. P. Magnetotactic bacteria. Science 190, 377–379 (1975).

    Article  ADS  CAS  Google Scholar 

  26. Semm, P. & Beason, R. C. Responses to small magnetic field variations by the trigeminal system of the bobolink. Brain Res. Bull. 25, 735–740 (1990).

    Article  CAS  Google Scholar 

  27. Beason, R. C. & Semm, P. Does the avian opthalmic nerve carry magnetic navigational information? J. Exp. Biol. 199, 1241–1244 (1996).

    CAS  PubMed  Google Scholar 

  28. Walker, M. M. & Bitterman, M. E. Honeybees can be trained to respond to very small changes in geomagnetic field intensity. J. Exp. Biol. 145, 489–494 (1989).

    Google Scholar 

  29. Walcott, C. Magnetic orientation in homing pigeons. IEEE Trans. Magn. Mag-16, 1008–1013 (1980).

    Article  ADS  Google Scholar 

  30. Kirschvink, J. L., Dizon, A. E. & Westphal, J. A. Evidence from strandings for geomagnetic sensitivity in cetaceans. J. Exp. Biol. 120, 1–24 (1986).

    Google Scholar 

  31. Walker, M., Kirschvink, J. L., Ahmed, G. & Dizon, A. E. Fin whales ( Balaenoptera physalus) avoid geomagnetic gradients during migration. J. Exp. Biol. 171, 67–78 (1992).

    CAS  PubMed  Google Scholar 

  32. Kirschvink, J. L. & Walker, M. M. in Magnetite Biomineralization and Magnetoreception by Living Organisms: A New Biomagnetism(eds Kirschvink, J. L., Jones, D. S. & MacFadden, B. J.) 243–254 (Plenum, New York, (1985)).

    Google Scholar 

  33. Benvenuti, S. & Walraff, H. G. Pigeon navigation: site simulation by means of atmospheric odours. J. Comp. Physiol. A 156, 737–746 (1985).

    Article  Google Scholar 

  34. Papi, F. Pigeons use olfactory cues to navigate. Ethol. Ecol. Evol. 1, 219–231 (1989).

    Article  Google Scholar 

  35. Wallraff, H. G. Relevance of atmospheric odours and geomagnetic field to pigeon navigation: what is the “map” basis? Comp. Biochem. Physiol. A 76, 643–663 (1983).

    Article  Google Scholar 

  36. Sidman, M. Tactics of Scientific Research: Evaluating Experimental Data in Psychology.(Basic Books, New York, (1960)).

    Google Scholar 

  37. Moench, T. T. & Konetzka, W. A. Anovel method for the isolation and study of a magnetotactic bacterium. Arch. Microbiol. 119, 203–212 (1978).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Whitehall Foundation, Marsden Fund, New Zealand Lotteries Grants Board, Auckland University Research Committee and School of Biological Sciences for support; W. T. M. Gruijters, B. M. Davy, I. MacDonald, V. Ward, A. Young and A. Cantell for technical assistance; and M. E. Bitterman, A. R. Bellamy and G. G. Dodson for helpful comments on earlier drafts of the manuscript.

Author information

Authors and Affiliations

Author notes

  1. Correspondence and requests for materials should be addressed to M.M.W.

    Authors

    Corresponding author

    Correspondence to Michael M. Walker.

    Rights and permissions

    Reprints and permissions

    About this article

    Cite this article

    Walker, M., Diebel, C., Haugh, C. et al. Structure and function of the vertebrate magnetic sense. Nature 390, 371–376 (1997). https://doi.org/10.1038/37057

    Download citation

    • Received:

    • Accepted:

    • Issue Date:

    • DOI: https://doi.org/10.1038/37057

    This article is cited by

    Comments

    By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

    Search

    Quick links

    Nature Briefing

    Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

    Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing