Skip to main content
Log in

Safe distance car-following model including backward-looking and its stability analysis

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The focus of this paper is the car-following behavior including backward-looking, simply called the bi-directional looking car-following behavior. This study is motivated by the potential changes of the physical properties of traffic flow caused by the fast developing intelligent transportation system (ITS), especially the new connected vehicle technology. Existing studies on this topic focused on general motors (GM) models and optimal velocity (OV) models. The safe distance car-following model, Gipps’ model, which is more widely used in practice have not drawn too much attention in the bi-directional looking context. This paper explores the property of the bi-directional looking extension of Gipps’ safe distance model. The stability condition of the proposed model is derived using the linear stability theory and is verified using numerical simulations. The impacts of the driver and vehicle characteristics appeared in the proposed model on the traffic flow stability are also investigated. It is found that taking into account the backward-looking effect in car-following has three types of effect on traffic flow: stabilizing, destabilizing and producing non-physical phenomenon. This conclusion is more sophisticated than the study results based on the OV bi-directional looking car-following models. Moreover, the drivers who have the smaller reaction time or the larger additional delay and think the other vehicles have larger maximum decelerations can stabilize traffic flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Helbing, Rev. Mod. Phys. 73, 1067 (2001)

    Article  ADS  Google Scholar 

  2. A. Schadschneider, Physica A 313, 153 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. D. Chowdhury, L. Santen, A. Schadschneider, Phys. Rep. 323, 199 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  4. B.S. Kerner, The Physics of Traffic: Empirical Freeway Pattern Features, Engineering Applications, and Theory (Springer-Verlag, Berlin, 2004)

  5. A. Schadschneider, D. Chowdhury, K. Nishinari, Stochastic Transport in Complex Systems: From Molecules to Vehicles (Elsevier Science, Amsterdam, 2010)

  6. M.J. Lighthill, G.B. Whitham, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 229, 317 (1955)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. B.D. Greenshields, Proc. High. Res. 14, 448 (1935)

    Google Scholar 

  8. J.M. Burgers, The Nonlinear Diffusion Equation: Asymptotic Solutions and Statistical Problems (D. Reidel Publishing Company, Boston, 1974)

  9. I. Prigogine, R. Herman, Kinetic Theory of Vehicular Traffic (Elsevier, Amsterdam, 1971)

  10. I. Prigogine, F.C. Andrews, Oper. Res. 8, 789 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Paveri-Fontana, Transp. Res. 9, 225 (1975)

    Article  Google Scholar 

  12. H. Lehmann, Phys. Rev. E 54, 6058 (1996)

    Article  ADS  Google Scholar 

  13. C. Wagner, C. Ho, Phys. Rev. E 54, 5073 (1996)

    Article  ADS  Google Scholar 

  14. K. Nagel, M. Schreckenberg, J. Phys. I 2, 2221 (1992)

    Article  Google Scholar 

  15. S. Maerivoet, B. De Moor, Phys. Rep. 419, 1 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  16. R.W. Rothery, in Traffic Flow Theory, edited by C.M.N.H. Gartner, A.K. Rathi (Transportation Research Board, Washington. D.C, 1998)

  17. S. Yukawa, M. Kikuchi, J. Phys. Soc. Jpn 64, 35 (1995)

    Article  ADS  Google Scholar 

  18. S. Yukawa, M. Kikuchi, J. Phys. Soc. Jpn 65, 916 (1996)

    Article  ADS  Google Scholar 

  19. S. Krauss, P. Wagner, C. Gawron, Phys. Rev. E 55, 5597 (1997)

    Article  ADS  Google Scholar 

  20. S. Jin, D. Wang, P. Tao, P. Li, Physica A 389, 4654 (2010)

    Article  ADS  Google Scholar 

  21. M. Brackstone, M. McDonald, Transp. Res. F 2, 181 (1999)

    Article  Google Scholar 

  22. R.E. Chandler, R. Herman, E.W. Montroll, Oper. Res. 6, 165 (1958)

    Article  MathSciNet  Google Scholar 

  23. R. Herman, E.W. Montroll, R.B. Potts, R.W. Rothery, Oper. Res. 7, 86 (1959)

    Article  MathSciNet  Google Scholar 

  24. D.C. Gazis, R. Herman, R.B. Potts, Oper. Res. 7, 499 (1959)

    Article  MathSciNet  Google Scholar 

  25. P.G. Gipps, Transp. Res. B 15, 105 (1981)

    Article  Google Scholar 

  26. M. Bando, K. Hasebe, A. Nakayama, A. Shibata, Y. Sugiyama, Phys. Rev. E 51, 1035 (1995)

    Article  ADS  Google Scholar 

  27. D. Helbing, B. Tilch, Phys. Rev. E 58, 133 (1998)

    Article  ADS  Google Scholar 

  28. R. Jiang, Q. Wu, Z. Zhu, Phys. Rev. E 64, 017101 (2001)

    Article  ADS  Google Scholar 

  29. D.N. Lee, Perception 5, 437 (1976)

    Article  Google Scholar 

  30. L. Evans, R. Rothery, Transp. Sci. 11, 60 (1977)

    Article  Google Scholar 

  31. S. Kikuchi, P. Chakroborty, Trans. Res. Rec. 1365, 82 (1992)

    Google Scholar 

  32. A. Rekersbrink, Strassenverkehrstechnik 39, 68 (1995)

    Google Scholar 

  33. K. Yikai, J. Satoh, N. Itakura, N. Honda, A. Satoh, in Proceedings of the International Congress on Modelling and Simulation, Perth, 1993

  34. A. Kesting, M. Treiber, M. Schönhof, D. Helbing, Transp. Res. C 16, 668 (2008)

    Article  Google Scholar 

  35. X. Yang, W. Recker, Transp. Res. C 13, 370 (2005)

    Article  Google Scholar 

  36. A. Nakayama, Y. Sugiyama, K. Hasebe, Phys. Rev. E 65, 16112 (2002)

    Article  ADS  Google Scholar 

  37. K. Hasebe, A. Nakayama, Y. Sugiyama, Phys. Rev. E 68, 026102 (2003)

    Article  ADS  Google Scholar 

  38. H.X. Ge, H.B. Zhu, S.Q. Dai, Eur. Phys. J. B 54, 503 (2006)

    Article  ADS  Google Scholar 

  39. D.H. Sun, X.Y. Liao, G.H. Peng, Physica A 390, 631 (2011)

    Article  ADS  Google Scholar 

  40. J. Jin, D. Yang, B. Ran, Y. Pu, F. Yang, in Proceedings of Transportation Research Board 92nd Annual Meeting Washington DC, 2013

  41. R.E. Wilson, IMA J. Appl. Math. 66, 509 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. T. Tang, C. Li, Y. Wu, H. Huang, Physica A 390, 3362 (2011)

    Article  ADS  Google Scholar 

  43. R.E. Wilson, IMA J. Appl. Math. 66, 509 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. L. Yu, T. Li, Z.K. Shi, Physica A 389, 2607 (2010)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, D., Jin, P., Pu, Y. et al. Safe distance car-following model including backward-looking and its stability analysis. Eur. Phys. J. B 86, 92 (2013). https://doi.org/10.1140/epjb/e2012-30688-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30688-6

Keywords

Navigation