Skip to main content
Log in

Application of dusty plasma for production of disperse composite materials

  • Supplement: Rossiiskii Khimicheskii Zhurnal-Zhurnal Rossiiskogo Khimicheskogo Obshchestva im. D.I. Mendeleeva (Russian Chemistry Journal)
  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Objectives and achievements of the production of disperse composite materials (DCMs) which consist of particles with a metal coating are represented. The prospects of the DCM production by the dusty plasma method based on confining a cloud of micron-sized particles in a discharge plasma and on magnetron sputtering are shown. The method was tested in the preparation of catalyst materials, a superhard diamond polycrystalline material, and a polyquasicrystalline material with a low friction coefficient. The results of investigations of the structure and properties of powdered and sintered DCMs are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Travitzky, N., Adv. Appl. Ceram., 2012, vol. 111, no. 5, pp. 286–300.

    Article  CAS  Google Scholar 

  2. Akaishi, M., Ohsawa, T., and Yamaoka, S., J. Am. Ceram. Soc., 1991, vol. 74, pp. 5–10.

    Article  CAS  Google Scholar 

  3. Katzman, H. and Libby, W.F., Science, 1971, vol. 172, pp. 1132–1133.

    Article  CAS  Google Scholar 

  4. Akaishi, M., Yamaoka, S., Tanaka, J., Ohsawa, T., and Fakunaga, O., J. Am. Ceram. Soc., 1987, vol. 70, pp. 237–239.

    Article  Google Scholar 

  5. Hong, S.-M., Akaishi, M., Kanda, H., and Osawa, T., J. Mater. Sci. Lett., 1988, vol. 23, pp. 3821–3826.

    Article  CAS  Google Scholar 

  6. Shige, T., Endo, S., Fujita, E.F., Tomii, Y., Science and Technology of New Diamond, Saito, S., Fakunaga, O., and Yoshikava, M., Eds., Tokyo: Terra Scientific, 1990, pp. 251–255.

  7. Wang, B., Ji, Z., Zimone, F.T., Janowski, G.M., and Rigsbee, J.M., Surf. Coat. Tech., 1997, vol. 91, nos. 1–2, pp. 64–68.

    Article  CAS  Google Scholar 

  8. Haraguchi, M., Komatsu, F., Tajiri, K., Okamoto, T., Fukui, M., and Kato, S., Surf. Sci., 2004, vol. 548, nos. 1–3, pp. 59–66.

    Article  CAS  Google Scholar 

  9. Bismarck, A., Lee, A.F., Sarac, A.S., and Wilson, K., Comp. Sci. Tech., 2005, vol. 65, pp. 1564–1573.

    Article  CAS  Google Scholar 

  10. Chujiang, C., Xiaozheng, Y., Zhigang, S., and Yushan, X., J. Phys. D: Appl. Phys., 2007, vol. 40, pp. 6023–6026.

    Google Scholar 

  11. Mangeney, C., Qin, Z., Dahoumane, S.A., Adenier, A., Herbst, F., Boudou, J.-P., Pinson, J., and Chehimi, M.M., Diamond Relat. Mater., 2008, vol. 17, no. 11, pp. 1881–1887.

    Article  CAS  Google Scholar 

  12. Khabashesku, V.N., Margrave, J.L., and Barrera, E.V., Diamond Relat. Mater., 2005, vol. 14, nos. 3–7, pp. 859–866.

    Article  CAS  Google Scholar 

  13. Wang, H.-D., Yang, Q., and Niu, C.H., Diamond Relat. Mater., 2010, vol. 19, nos. 5–6, pp. 441–444.

    Article  CAS  Google Scholar 

  14. Emig, G., Popovska, N., Schoch, G., and Stumm, T., Carbon, 1998, vol. 36, no. 4, pp. 407–415.

    Article  CAS  Google Scholar 

  15. Varadarajan, S., Pattanaik, A.K., and Sarin, V.K., Surf. Coat. Tech., 2001, vol. 139, nos. 2–3, pp. 153–160.

    Article  CAS  Google Scholar 

  16. Czok, G. and Werther, J., China Particuol., 2005, vol. 3, nos. 1–2, pp. 105–112.

    Article  CAS  Google Scholar 

  17. Caussat, B. and Vahlas, C., Chem. Vapor Depos., 2007, vol. 13, no. 9, pp. 443–445.

    Article  CAS  Google Scholar 

  18. Arai, T., Fujita, H., Watanabe, M., and Diego, S., Thin Solid Films, 1987, vol. 154, pp. 387–401.

    Article  CAS  Google Scholar 

  19. Shin, H.S. and Goodwin, D.G., Mater. Lett., 1994, vol. 19, April, pp. 119–122.

    Article  CAS  Google Scholar 

  20. Bi, H., Jiang, P., Jean, R.-H., and Fan, L.-S., Chem. Eng. Sci., 1992, vol. 47, no. 12, pp. 3113–3124.

    Article  CAS  Google Scholar 

  21. Danilin, B.S., Primenenie nizkotemperaturnoi plazmy dlya naneseniya tonkikh plenok (Application of Low-Temperature Plasma for Deposition of Thin Films), Moscow: Energoatomizdat, 1989.

    Google Scholar 

  22. Zhiglinskiy, A.G. and Kuchinskiy, V.V., Massoperenos pri vzaimodeistvii plazmy s poverkhnost’yu (Mass Transfer in the Plasma-Surface Interaction), Moscow: Energoatomizdat, 1991.

    Google Scholar 

  23. Dostanko, A.P. and Grushetskii, S.V., Plazmennaya metallizatsiya v vakuume (Plasma Metallization in a Vacuum), Minsk: Nauka i Tekhnika, 1983.

    Google Scholar 

  24. Schwarz, B., Schrank, C., Eisenmenger-Sittner, C., Stöger-Pollach, M., Rosner, M., and Neubauer, E., Surf. Coat. Tech., 2006, vol. 200, nos. 16–17, pp. 4891–4896.

    Article  CAS  Google Scholar 

  25. Poelman, H., Eufinger, K., Depla, D., Poelman, D., De Gryse, R., Sels, B.F., and Marin, G.B., Appl. Catal. A: General, 2007, vol. 325, no. 2, pp. 213–219.

    Article  CAS  Google Scholar 

  26. Chan, K.-Y., Luo, P.-Q., Zhou, Z.-B., Tou, T.-Y., and Teo, B.-S., App. Surf. Sci., 2009, vol. 225, no. 10, pp. 5186–5190.

    Article  Google Scholar 

  27. Yu, X., Xu, Z., and Shen, Z., J. Phys. D: Appl. Phys., 2007, vol. 40, no. 9, 2894–2898.

    Article  CAS  Google Scholar 

  28. Wasa, K., Kitabatake, M., and Adachi, H., Thin Film Materials Technology: Sputtering of Compound Materials, Norwich, NY: William Andrew, 2004.

    Google Scholar 

  29. Vysikailo, F.I., Mitin, V.S., and Mitin, A.V., Nanotekhnika, 2010, no. 4, issue 24, pp. 10–22.

    Google Scholar 

  30. Mankelevich, Yu.A., Mitin, A.V., Mitin, V.S., Pal’, A.F., Rakhimova, T.V., Ryabinkin, A.N., Serov, A.O., and Luchkin, S.Yu., Tech. Phys. Lett., 2013, vol. 39, p. 39.

    Article  CAS  Google Scholar 

  31. Ivanov, A.S., Mitin, V.S., Pal’, A.F., Ryabinkin, A.N., Serov, A.O., Skryleva, E.A., Starostin, A.N., Fortov, V.E., and Shul’ga, Yu.M., Doklady Physics, 2004, vol. 49, no. 3, pp. 163–166.

    Article  CAS  Google Scholar 

  32. Ekimov, E.A., Ivanov, A.S., Pal’, A.F., Ryabinkin, A.N., Serov, A.O., Starostin, A.N., Fortov, V.E., Sadykov, R.A., Mel’nik, N.N., and Presh, A., Doklady Physics, 2005, vol. 50, no. 7, pp. 351–354.

    Article  CAS  Google Scholar 

  33. Belov, I.A., Ivanov, A.S., Ryabinkin, A.N., and Serov, A.O., Entsiklopediya nizkotemperaturnoi plazmy (Encyclopaedia of Low-Temperature Plasma), 2006, vol. 1.

  34. Hell, J., Horkel, M., Neubauer, E., and Eisenmenger-Sittner, C., Vacuum, 2009, vol. 84, no. 4, pp. 453–457.

    Article  CAS  Google Scholar 

  35. Hell, J., Chirtoc, M., Eisenmenger-Sittner, C., Hutter, H., Kornfeind, N., Kijamnajsuk, P., Kitzmantel, M., Neubauer, E., and Zellhofer, K., Surf. Coat. Technol., 2012, vol. 208, pp. 24–31.

    Article  CAS  Google Scholar 

  36. Lowe, A. and Hosford, C., J. Vac. Sci. Technol., 1979, vol. 16, no. 2, pp. 197–199.

    Article  CAS  Google Scholar 

  37. Yu, X. and Shen, Z., J. Magn. Magn. Mater., 2009, vol. 321, no. 18, pp. 2890–2895.

    Article  CAS  Google Scholar 

  38. Yu, X. and Shen, Z., Vacuum, 2011, vol. 85, no. 11, pp. 1026–1031.

    Article  CAS  Google Scholar 

  39. Cairns, J.A., Nelson, R.S., and Barnfield, R.W., US Patent 4046712, 1977.

  40. Haas, V. and Birringer, R., Nanostruct. Mater., 1992, vol. 1, pp. 491–504.

    Article  CAS  Google Scholar 

  41. Takeuchi, A. and Wise, H., J. Catal., 1983, vol. 83, no. 2, pp. 477–479.

    Article  CAS  Google Scholar 

  42. Albers, P., Seibold, K., Mcevoy, A.J., and Kiwi, J., J. Phys. Chem., 1989, vol. 93, no. 4, pp. 1510–1515.

    Article  CAS  Google Scholar 

  43. Fedotov, A.A., Grigoriev, S.A., Lyutikova, E.K., Millet, P., and Fateev, V.N., Int. J. Hydrogen Energy, 2012, pp. 7–11.

    Google Scholar 

  44. Veith, G.M., Lupini, A.R., Pennycook, S.J., Ownby, G.W., and Dudney, N.J., J. Catal., 2005, vol. 231, no. 1, pp. 151–158.

    Article  CAS  Google Scholar 

  45. Gavrikov, A.V., Dorokhov, V.G., Ivanov, A.S., Pal’, A.F., Petrov, O.F., Ryabinkin, A.N., Savchenko, V.I., Serov, A.O., Skryleva, E.A., and Starostin, A.N., Doklady Physics, 2010, vol. 55, no. 2, pp. 55–57.

    Article  CAS  Google Scholar 

  46. Yu, X. and Shen, Z., Powder Technol., 2008, vol. 187, no. 3, pp. 239–243.

    Article  CAS  Google Scholar 

  47. Schmid, G., Eisenmenger-Sittner, C., Hell, J., Horkel, M., Keding, M., and Mahr, H., Surf. Coat. Technol., 2010, vol. 205, no. 7, pp. 1929–1936.

    Article  CAS  Google Scholar 

  48. Baechle, D.M., Demaree, J.D., Hirvonen, J.K., and Wetzel, E.D., Surf. Coat. Technol., 2013, vol. 221, pp. 94–103.

    Article  CAS  Google Scholar 

  49. Geldart, D. and Abrahamsen, A.R., Powder Technol., 1978, vol. 19, no. 1, pp. 133–136.

    Article  CAS  Google Scholar 

  50. Chen, G., Chen, S., Zhou, M., Feng, W., Gu, W., and Yang, S., J. Phys. D: Appl. Phys., 2006, vol. 39, no. 24, pp. 5211–5215.

    Article  CAS  Google Scholar 

  51. Snyder, H.R., Currier, R.P., and Murillo, M.S., Appl. Phys. Lett., 2000, vol. 76, no. 18, pp. 2511–2513.

    Article  CAS  Google Scholar 

  52. Kersten, H., Schmetz, P., and Kroesen, G.M.W., Surf. Coat. Technol., 1998, vols. 108–109, nos. 1–3, pp. 507–512.

    Article  Google Scholar 

  53. Stoffels, E., Stoffels, W.W., Kersten, H., Swinkels, G., and Kroesen, G.M.W., Phys. Scr., 2001, vol. 89, pp. 168–172.

    Article  Google Scholar 

  54. Ivanov, A., Mitin, V., Pal, A., Ryabinkin, A., Serov, A., Skryleva, E., Starostin, A., Fortov, V., Shulga, Y., Plasma Processes and Polymers, d’Agostino, R., Favia, P., Oehr, C., and Wertheimer, M., Eds., Weinheim: Wiley-VCH, 2005, pp. 455–464.

  55. Rudavets, A.G., Ryabinkin, A.N., and Serov, A.O., Plasma Proc. Polym., 2011, vol. 8, no. 4, pp. 346–352.

    Article  CAS  Google Scholar 

  56. Belov, I.A., Ivanov, A.S., Pal, A.F., Ryabinkin, A.N., and Serov, A.O., Phys. Lett. A, 2002, vol. 306, pp. 52–56.

    Article  CAS  Google Scholar 

  57. Mankelevich, Yu.A., Olevanov, M.A., Pal’, A.F., Rakhimova, T.V., Ryabinkin, A.N., Serov, A.O., and Filippov, A.V., Plasma Phys. Reports, 2009, vol. 35, pp. 191–199.

    Article  CAS  Google Scholar 

  58. Belov, I.A., Ivanov, A.S., Ivanov, D.A., Pal’, A.F., Starostin, A.N., Filippov, A.V., Dem’yanov, A.V., and Petrushevich, Yu.V., J. Exp. Theor. Phys., 2000, vol. 90, no. 1, p. 93.

    Article  CAS  Google Scholar 

  59. Filippov, A.V., Zagorodnii, A.G., Momot, A.I., Pal’, A.F., and Starostin, A.N., J. Exp. Theor. Phys., 2007, vol. 105, no. 4, p. 831.

    Article  CAS  Google Scholar 

  60. Pal, A.F., Ryabinkin, A.N., and Serov, A.O., Proc. VII Int. Conf. Plasma Physics and Plasma Technology, Minsk, 2012, pp. 805–807.

    Google Scholar 

  61. Pal’, A.F., Ryabinkin, A.N., Serov, A.O., Dyatko, N.A., Starostin, A.N., and Filippov, A.V., JETP, 2012, vol. 114, p. 535.

    Article  Google Scholar 

  62. Bohren, C.F. and Huffman, D.R., Absorption and Scattering of Light by Small Particles, Wiley-VCH, 1998. p. 544.

    Book  Google Scholar 

  63. Huang, F.Y. and Kushner, M.J., J. Appl. Phys., 1997, vol. 81, no. 9, pp. 5960–5965.

    Article  CAS  Google Scholar 

  64. Lapenta, G., Phys. Scr., 2001, vol. 599, pp. 599–604.

    Article  Google Scholar 

  65. Olevanov, M.A., Mankelevich, Yu.A., and Rakhimova, T.V., J. Exp. Theor. Phys., 2004, vol. 98, no. 2, p. 287.

    Article  CAS  Google Scholar 

  66. Stevens, M.J. and Robbins, M.O., J. Chem. Phys., 1993, vol. 98, no. 3, pp. 2319–2324.

    Article  CAS  Google Scholar 

  67. Window, B. and Savvides, N., J. Vac. Sci. Technol. A, 1986, vol. 4, no. 2, pp. 196–202.

    Article  CAS  Google Scholar 

  68. Kashtanov, P.V., Smirnov, B.M., and Hippler, R., Phys. Usp., 2007, vol. 50, p. 455.

    Article  CAS  Google Scholar 

  69. Somekh, R.E., J. Vac. Sci. Technol. A, 1984, vol. 2, pp. 1285–1291.

    Article  CAS  Google Scholar 

  70. Augustyniak, E., Filimonov, S., and Lu, C., Proc. SPIE Conf. on Process, Equipment, and Materials Control in Integrated Circuit Manufacturing IV, Santa Clara, CA, 1998, pp. 192–200.

    Google Scholar 

  71. Turner, G.M., Falconer, I.S., James, B.W., and McKenzie, D.R., J. Appl. Phys., 1989, vol. 65, pp. 3671–3679.

    Article  Google Scholar 

  72. Kolev, I. and Bogaerts, A., IEEE Trans. Plasma Sci., 2006, vol. 34, no. 3, pp. 886–894.

    Article  CAS  Google Scholar 

  73. Costin, C., Marques, L., Popa, G., and Gousset, G., Plasma Sources Sci. Technol., 2005, vol. 14, no. 1, pp. 168–176.

    Article  Google Scholar 

  74. Costin, C., Minea, T., Popa, G., and Gousset, G., Plasma Process. Polym., 2007, vol. 4, pp. S960–S964.

    Article  Google Scholar 

  75. Flanagan, T.M. and Goree, J., Phys. Plasmas, 2006, vol. 13, issue 12, pp. 123504–123504-11.

    Article  Google Scholar 

  76. Pal, A.F., Ryabinkin, A.N., Serov, A.O., Dyatko, N.A., Starostin, A.N., and Filippov, A.V., J. Exp. Theor. Phys., 2012, vol. 114,3, pp. 535–546.

    Article  CAS  Google Scholar 

  77. Rossnagel, S.M. and Kaufman, H.R., J. Vac. Sci. Technol. A, 1987, vol. 5, no. 1, pp. 88–91.

    Article  Google Scholar 

  78. Maurer, H.R., Basner, R., and Kersten, H., Contrib. Plasma Phys., 2010, vol. 50, no. 10, pp. 954–961.

    Article  CAS  Google Scholar 

  79. Hoffman, D.W., J. Vac. Sci. Technol. A, 1985, vol. 3, pp. 561–566.

    Article  CAS  Google Scholar 

  80. Benilov, M.S., Plasma Sources Sci. Technol., 2009, vol. 18, p. 1.

    Article  Google Scholar 

  81. Gurrappa, I. and Wilson, A., K.D.P., J. Coat. Technol. Res., 2009, vol. 6, no. 2, pp. 257–268.

    Article  CAS  Google Scholar 

  82. Muller, C.A., Maciejewski, M., Koeppel, R.A., and Baiker, A., J. Catal., 1997, vol. 43, no. 3 pp. 6–43.

    Google Scholar 

  83. Ekimov, E.A., Sadykov, R.A., Gierlotka, S., Presz, A., Tatyanin, E.V., Slesarev, V.N., and Kuzin, N.N., Instruments and Experimental Techniques, 2004, vol. 47, pp. 276–278.

    Article  CAS  Google Scholar 

  84. Bekman, I.N., Yadernaya industriya: Kurs lektsii (Nuclear Industry: A Series of Lectures) Moscow: Mosk. Gos. Univ., 2005.

    Google Scholar 

  85. Vlasov, E.A., Gusarov, V.V., Postnov, A.Yu., and Mal’tseva, N.V., Trudy 4 Rossiiskoi konferentsii “Fizicheskie problemy vodorodnoi energetiki” (Proc. 4th Russian Conf. “Physical Problems of Hydrogen Energy”), St. Petersburg: Fiziko-Tekhnicheskii Institut im. A.F. Ioffe, Ross. Akad. Nauk, 2007, pp. 3–12.

    Google Scholar 

  86. Johansson, A., Försth, M., and Rosén, A., Surf. Sci., 2003, vol. 529, nos. 1–2, pp. 247–266.

    Article  CAS  Google Scholar 

  87. Sakharovskiy, Yu.A., Shkurenok, D.Yu., and Lomazov, A.V., Khim. Prom-st Segodnya, 2009, no. 12, pp. 5–9.

    Google Scholar 

  88. Johansson, M. and Ekedahl, L.-G., Appl. Surf. Sci., 2001, vol. 180, pp. 27–35.

    Article  CAS  Google Scholar 

  89. Wei, T.C. and Phillips, J., Adv. Catal., 1996, vol. 41, pp. 359–421.

    CAS  Google Scholar 

  90. Uehara, K. and Yamaya, S., Science and Technology of New Diamond, Saito, S., Fakunaga, O., and Yoshikava, M., Eds., Tokyo: Terra Scientific, 1990, pp. 203–209.

  91. Ekimov, E.A., Suetin, N.V., Popovich, A.F., and Ralchenko, V.G., Diamond Relat. Mater., 2008, vol. 17, pp. 838–843.

    Article  CAS  Google Scholar 

  92. Ekimov, E.A., Borovikov, N.F., Ivanov, A.S., Leonov, A., Pal’, A.F., Ryabinkin, A.N., Serov, A.O., and Starostin, A.N., Investigated in Russia, 2009, no. 12, pp. 562–571. http://www.sci-journal.ru/articles/2007/065.pdf.

    Google Scholar 

  93. Physisal Properties of Quasicrystals, Stadnik, Z.M., Ed., Berlin: Springer, 1999.

    Google Scholar 

  94. Vekilov, Yu.Kh. and Chernikov, M.A., Phys. Usp., 2010, vol. 180, no. 6, pp. 561–586.

    Article  Google Scholar 

  95. Ivanov, A.S., Kruglov, V.S., Pal’, A.F., Ryabinkin, A.N., Serov, A.O., Shaitura, D.S., Starostin, A.N., Gavrikov, A.V., Petrov, O.F., and Fortov, V.E., Tech. Phys. Lett., 2011, vol. 37, no. 10, p. 917.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Ivanov.

Additional information

Original Russian Text © A.S. Ivanov, A.F. Pal, A.N. Ryabinkin, A.O. Serov, E.A. Ekimov, A.V. Smirnov, A.N. Starostin, 2013, published in Rossiiskii Khimicheskii Zhurnal, 2013, Vol. 57, Nos. 3–4, pp. 70–82.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, A.S., Pal, A.F., Ryabinkin, A.N. et al. Application of dusty plasma for production of disperse composite materials. Russ J Gen Chem 85, 1270–1283 (2015). https://doi.org/10.1134/S1070363215050448

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363215050448

Keywords

Navigation