Skip to main content
Log in

Coagulation and growth mechanisms for dust particles in a low-temperature plasma

  • Plasma, Gases
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We suggest a theoretical model of dust clustering in a low-temperature plasma that includes a description of all the main stages of this process, from the initial growth and coagulation of particles to the saturation phase. Based on the constructed theory, we have explained the experimentally observed threshold behavior of the coagulation process for the first time and estimated the critical microparticle size upon reaching which transition from the growth of particles through the deposition of material from the gas phase to their coagulation becomes possible. Using the derived analytical expressions for the coagulation rate constant, we numerically simulated the clustering process based on data taken for real experimental conditions and studied the evolution of the particle size distribution function during the entire process. A direct comparison of the numerical calculations with experimental data shows them to be in good agreement with the actually observed pattern of the phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Selwyn, J. Singh, and R. Bennet, J. Vac. Sci. Technol. A 7, 2758 (1989).

    ADS  Google Scholar 

  2. M. P. Garrity, T. W. Peterson, and J. F. O’Hanlon, J. Vac. Sci. Technol. A 14, 550 (1996).

    Article  ADS  Google Scholar 

  3. L. Boufendi, J. Hermann, A. Bouchoule, et al., J. Appl. Phys. 76, 148 (1994).

    Article  ADS  Google Scholar 

  4. K. Spears, T. Robinson, and R. Roth, IEEE Trans. Plasma Sci. 14, 179 (1986).

    Google Scholar 

  5. G. Selwyn, J. McKillop, K. Haller, and J. Wu, J. Vac. Sci. Technol. A 8, 1726 (1990).

    Article  ADS  Google Scholar 

  6. G. Jellum and D. Graves, J. Appl. Phys. 67, 6490 (1990).

    Article  ADS  Google Scholar 

  7. R. Buss and J. Babu, J. Vac. Sci. Technol. A 14, 577 (1996).

    Article  ADS  Google Scholar 

  8. H. Hahn and R. Averback, J. Appl. Phys. 67, 1113 (1990).

    Article  ADS  Google Scholar 

  9. T. Fukuzava, H. Kawasaki, M. Shiratani, and Y. Watanabe, Jpn. J. Appl. Phys., Part 1 33(7B), 4212 (1994).

    Google Scholar 

  10. H. Kawasaki, T. Fukuzava, H. Tsuruoka, et al., Jpn. J. Appl. Phys., Part 1 33(7B), 4198 (1994).

    Google Scholar 

  11. W. Böhme, W. E. Köhler, M. Römheld, et al., IEEE Trans. Plasma Sci. 22, 110 (1994).

    ADS  Google Scholar 

  12. M. Shiratani, T. Fukuzawa, and Y. Watanabe, IEEE Trans. Plasma Sci. 22, 103 (1994).

    Article  ADS  Google Scholar 

  13. Y. Watanabe, M. Shiratani, H. Kawasaki, et al., J. Vac. Sci. Technol. A 14, 540 (1996).

    ADS  Google Scholar 

  14. Y. Watanabe and M. Shiratani, Jpn. J. Appl. Phys., Part 1 32(6B), 3074 (1993).

    Google Scholar 

  15. A. Bouchoule, L. Boufendi, J. Hermann, et al., Pure Appl. Chem. 68, 1121 (1996).

    Google Scholar 

  16. H. Kawasaki, K. Sakamoto, S. Maeda, et al., Jpn. J. Appl. Phys., Part 1 37(10), 5757 (1998).

    Google Scholar 

  17. T. Fukuzava, S. Kushima, Y. Matsuoka, et al., J. Appl. Phys. 86, 3543 (1999).

    ADS  Google Scholar 

  18. K. Koga, Y. Matsuoka, K. Tanaka, et al., Appl. Phys. Lett. 77, 196 (2000).

    ADS  Google Scholar 

  19. M. Shiratani, T. Fukuzawa, and Y. Watanabe, Jpn. J. Appl. Phys., Part 1 38(7B), 4542 (1999).

    Google Scholar 

  20. H. Kawasaki, K. Sakamoto, and S. Maeda, Jpn. J. Appl. Phys., Part 2 37(10B), L1264 (1998).

  21. H. Kawasaki, J. Kida, K. Sakamoto, et al., J. Appl. Phys. 83, 5665 (1998).

    Article  ADS  Google Scholar 

  22. Y. Hayashi and K. Tachibana, Jpn. J. Appl. Phys., Part 1 33(7B), 4208 (1994).

    Google Scholar 

  23. Y. Hayashi and K. Tachibana, Jpn. J. Appl. Phys., Part 2 33(6A), L804 (1994).

    Google Scholar 

  24. G. Praburam and J. Goree, Astrophys. J. 441, 830 (1995).

    Article  ADS  Google Scholar 

  25. D. Samsonov and J. Goree, J. Vac. Sci. Technol. A 17, 2835 (1999).

    Article  ADS  Google Scholar 

  26. D. Samsonov and J. Goree, Phys. Rev. E 59, 1047 (1999).

    Article  ADS  Google Scholar 

  27. P. Haaland, S. Ibrani, and H. Jiang, Appl. Phys. Lett. 64, 1629 (1994).

    Article  ADS  Google Scholar 

  28. Y. Matsuoka, M. Shiratani, T. Fukuzava, et al., Jpn. J. Appl. Phys., Part 1 38(7B), 4556 (1999).

    Google Scholar 

  29. M. Shiratani, S. Maeda, K. Koga, and Y. Watanabe, Jpn. J. Appl. Phys., Part 1 39(1), 287 (2000).

    Google Scholar 

  30. A. Garscadden, Pure Appl. Chem. 66, 1319 (1994).

    Google Scholar 

  31. M. T. Swihart, S. Nijhawan, M. R. Mahajan, et al., J. Aerosol Sci. 29, S79 (1998).

    Google Scholar 

  32. U. R. Kortshagen, U. V. Bhandarkar, M. T. Swihart, and M. T. Girshick, Pure Appl. Chem. 71, 1871 (1999).

    Google Scholar 

  33. M. T. Swihart and S. L. Girshick, J. Phys. Chem. B 103, 64 (1999).

    Article  Google Scholar 

  34. U. V. Bhandarkar, M. T. Swihart, S. L. Girshick, and U. R. Kortshagen, J. Phys. D: Appl. Phys. 33, 2731 (2000).

    Article  ADS  Google Scholar 

  35. Kio-Seon Kim and M. Ikegawa, Plasma Sources Sci. Technol. 5, 311 (1996).

    Article  ADS  Google Scholar 

  36. P. Haaland, A. Garscadden, and B. Ganguly, Appl. Phys. Lett. 69, 904 (1996).

    Article  ADS  Google Scholar 

  37. S. J. Choi and M. J. Kushner, J. Appl. Phys. 74, 853 (1993).

    ADS  Google Scholar 

  38. V. N. Tsytovich, Usp. Fiz. Nauk 167, 57 (1997) [Phys. Usp. 40, 53 (1997)].

    Google Scholar 

  39. V. A. Schweigert and I. V. Schweigert, J. Phys. D: Appl. Phys. 29, 655 (1996).

    Article  ADS  Google Scholar 

  40. H. U. Keller, J. Blum, B. Donn, et al., Adv. Space Res. 13(7), 73 (1993).

    ADS  Google Scholar 

  41. F. Y. Huang, H. H. Hwang, and M. J. Kushner, J. Vac. Sci. Technol. A 14, 562 (1996).

    ADS  Google Scholar 

  42. F. Y. Huang and M. J. Kushner, J. Appl. Phys. 81, 5960 (1997).

    ADS  Google Scholar 

  43. K. Watanabe, K. Nishimura, and T. Sato, in Advances in Dusty Plasmas, Ed. by P. K. Shukla, D. A. Mendis, and T. Desai (World Sci., Singapore, 1998), p. 394.

    Google Scholar 

  44. Yu. A. Mankelevich, M. A. Olevanov, and T. V. Rakhimova, Zh. Éksp. Teor. Fiz. 121, 1288 (2002) [JETP 94, 1106 (2002)].

    Google Scholar 

  45. R. A. Quinn and J. Goree, Phys. Rev. E 61, 3033 (2000).

    Article  ADS  Google Scholar 

  46. R. A. Quinn and J. Goree, Phys. Plasmas 7, 3904 (2002).

    ADS  Google Scholar 

  47. M. A. Olevanov, Yu. A. Mankelevich, and T. V. Rakhimova, Zh. Éksp. Teor. Fiz. 123, 503 (2003) [JETP 96, 444 (2003)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l}\) Fiziki, Vol. 125, No. 2, 2004, pp. 324–344.

Original Russian Text Copyright © 2004 by Olevanov, Mankelevich, Rakhimova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olevanov, M.A., Mankelevich, Y.A. & Rakhimova, T.V. Coagulation and growth mechanisms for dust particles in a low-temperature plasma. J. Exp. Theor. Phys. 98, 287–304 (2004). https://doi.org/10.1134/1.1675896

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1675896

Keywords

Navigation