Skip to main content
Log in

Dynamics of the phase transitions in the system of nonequilibrium charge carriers in quantum-dimensional Si1 − x Ge x /Si structures

  • Electronic Properties of Solid
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The dynamics of the phase transition from an electron-hole plasma to an exciton gas is studied during pulsed excitation of heterostructures with Si1 − x Ge x /Si quantum wells. The scenario of the phase transition is shown to depend radically on the germanium content in the Si1 − x Ge x layer. The electron-hole system decomposes into a rarefied exciton and a dense plasma phases for quantum wells with a germanium content x = 3.5% in the time range 100–500 ns after an excitation pulse. In this case, the electron-hole plasma existing in quantum wells has all signs of an electron-hole liquid. A qualitatively different picture of the phase transition is observed for quantum wells with x = 9.5%, where no separation into phases with different electronic spectra is detected. The carrier recombination in the electron-hole plasma leads a gradual weakening of screening and the appearance of exciton states. For a germanium content of 5–7%, the scenario of the phase transition is complex: 20–250 ns after an excitation pulse, the properties of the electron-hole system are described in terms of a homogeneous electron-hole plasma, whereas its separation into an electron-hole liquid and an exciton gas is detected after 350 ns. It is shown that, for the electron-hole liquid to exist in quantum wells with x = 5–7% Ge, the exciton gas should have a substantially higher density than in quantum wells with x = 3.5% Ge. This finding agrees with a decrease in the depth of the local minimum of the electron-hole plasma energy with increasing germanium concentration in the SiGe layer. An increase in the density of the exciton gas coexisting with the electron-hole liquid is shown to enhance the role of multiparticle states, which are likely to be represented by trions T + and biexcitons, in the exciton gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Christopoulos, G. B. H. von Högersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean,, Phys. Rev. Lett. 98, 126405 (2007).

    Article  ADS  Google Scholar 

  2. J. J. Baumberg, A. V. Kavokin, S. Christopoulos, A. J. D. Grundy, R. Butté, G. Christmann, D. D. Solnyshkov, G. Malpuech, G. B. H. von Högersthal, E. Feltin, J.-F. Carlin, and N. Grandjean, Phys, Rev. Lett. 101, 136409 (2008).

    Article  ADS  Google Scholar 

  3. J. Szeszko, V. V. Belykh, P. Gallo, A. Rudra, K. F. Karlsson, N. N. Sibeldin, and E. Kapon, Appl. Phys. Lett. 100, 211907 (2012).

    Article  ADS  Google Scholar 

  4. V. V. Nikolaev and M. E. Portnoi, Superlattices Microstruct. 43, 460 (2008).

    Article  ADS  Google Scholar 

  5. H. Reinholz, Solid State Commun. 123, 489 (2002).

    Article  ADS  Google Scholar 

  6. D. Snoke, Solid State Commun. 146, 73 (2008).

    Article  ADS  Google Scholar 

  7. Yu. E. Lozovik and O. L. Berman, Phys. Scr. 55, 491 (1997).

    Article  ADS  Google Scholar 

  8. K. Asano and T. Ogawa, Physica E: (Amsterdam) 40, 1249 (2008).

    Article  ADS  Google Scholar 

  9. T. Ogawa, Y. Tomio, and K. Asano, J. Phys.: Conf. Ser. 21, 112 (2005).

    ADS  Google Scholar 

  10. D. V. Kulakovskii, S. I. Gubarev, and Yu. E. Lozovik, JETP 94(4), 785 (2002).

    Article  ADS  Google Scholar 

  11. S. Ben Tabou de Leon and B. Laikhtman, Phys. Rev. B: Condens. Matter 67, 235315 (2003).

    Article  ADS  Google Scholar 

  12. S. W. Koch, W. Hoyer, M. Kira, and V. S. Filinov, Phys. Status Solidi B 238, 404 (2003).

    Article  ADS  Google Scholar 

  13. M. Stern, V. Garmider, V. Umansky, and I. Bar-Joseph, Phys. Rev. Lett. 100, 256402 (2008).

    Article  ADS  Google Scholar 

  14. L. Kappei, J. Szczytko, F. Morier-Genoud, and B. Deveaud, Phys. Rev. Lett. 94, 147403 (2005).

    Article  ADS  Google Scholar 

  15. S. I. Gubarev, I. V. Kukushkin, S. V. Tovstonog, M. Yu. Akimov, J. Smet, K. von Klitzing, and W. Wegscheider, JETP Lett. 72(6), 324 (2000).

    Article  ADS  Google Scholar 

  16. S. I. Gubarev, O. V. Volkov, V. A. Koval’skii, D. V. Kulakovski, and I. V. Kukushkin, JETP Lett. 76(9), 575 (2002).

    Article  ADS  Google Scholar 

  17. B. A. Foreman, Phys. Rev. B: Condens. Matter 49, 1757 (1994).

    Article  ADS  Google Scholar 

  18. C. Y.-P. Chao and S. L. Chuang, Phys. Rev. B: Condens. Matter 46, 4110 (1992).

    Article  ADS  Google Scholar 

  19. A. Amo, M. D. Martín, L. Viña, A. I. Toropov, and K. S. Zhuravlev,, J. Appl. Phys. 101, 081717 (2007).

    Article  ADS  Google Scholar 

  20. V. S. Bagaev, V. V. Zaitsev, V. S. Krivobok, D. N. Lobanov, S. N. Nikolaev, A. V. Novikov, and E. E. Onishchenko, JETP 107(5), 846 (2008).

    Article  ADS  Google Scholar 

  21. T. M. Burbaev, M. N. Gordeev, D. N. Lobanov, A. V. Novikov, M. M. Rzaev, N. N. Sibeldin, M. L. Skorikov, V. A. Tsvetkov, and D. V. Shepel, JETP Lett. 92(5), 305 (2010).

    Article  ADS  Google Scholar 

  22. V. V. Zaitsev, V. S. Bagaev, T. M. Burbaev, V. S. Krivobok, A. V. Novikov, and E. E. Onishchenko, Physica E (Amsterdam) 40, 1172 (2008).

    Article  ADS  Google Scholar 

  23. V. S. Bagaev, V. S. Krivobok, S. N. Nikolaev, A. V. Novikov, E. E. Onishchenko, and M. L. Skorikov, Phys. Rev. B: Condens. Matter 82, 115313–1 (2010).

    Article  ADS  Google Scholar 

  24. V. S. Bagaev, V. S. Krivobok, S. N. Nikolaev, E. E. Onishchenko, M. L. Skorikov, A. V. Novikov, and D. N. Lobanov JETP Lett. 94(1), 63 (2011).

    Article  ADS  Google Scholar 

  25. T. Baier, U. Mantz, K. Thonke, R. Sauer, F. Schäffler, and H.-J. Herzog,, Phys. Rev. B: Condens. Matter 50, 15191 (1994); V. S. Bagaev, V. S. Krivobok, V. P. Martovitsky, and A. V. Novikov, JETP 109 (6), 997 (2009).

    Article  ADS  Google Scholar 

  26. S. N. Nikolaev, V. S. Krivobok, A. Yu. Klokov, and V. S. Bagaev, Instrum. Exp. Tech. 52(1), 110 (2009).

    Article  Google Scholar 

  27. G. D. Mahan, Phys. Rev. 153, 882 (1967).

    Article  ADS  Google Scholar 

  28. C. D. Jeffries and L. V. Keldysh, Electron-Hole Droplets in Semiconductors (North-Holland, Amsterdam, The Netherlands, 1983; Nauka, Moscow, 1988).

    Google Scholar 

  29. C. B. Guillaume, J. M. Debever, and F. Salvan, Phys. Rev. 177, 567 (1969).

    Article  ADS  Google Scholar 

  30. V. S. Bagaev, V. V. Zaitsev, Yu. V. Klevkov, and V. S. Krivobok, Phys. Solid State 47(10), 1827 (2005).

    Article  ADS  Google Scholar 

  31. G. V. Astakhov, D. R. Yakovlev, V. P. Kochereshko, W. Ossau, W. Faschinger, J. Puls, F. Henneberger, S. A. Crooker, Q. McCulloch, D. Wolverson, N. A. Gippius, and A. Waag, Phys. Rev. B: Condens. Matter 65, 165335 (2002).

    Article  ADS  Google Scholar 

  32. M. L. W. Thewalt and W. G. McMullan, Phys. Rev. B: Condens. Matter 30, 6232 (1984).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Krivobok.

Additional information

Original Russian Text © V.S. Bagaev, V.S. Krivobok, S.N. Nikolaev, E.E. Onishchenko, A.A. Pruchkina, D.F. Aminev, M.L. Skorikov, D.N. Lobanov, A.V. Novikov, 2013, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2013, Vol. 144, No. 5, pp. 1045–1060.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagaev, V.S., Krivobok, V.S., Nikolaev, S.N. et al. Dynamics of the phase transitions in the system of nonequilibrium charge carriers in quantum-dimensional Si1 − x Ge x /Si structures. J. Exp. Theor. Phys. 117, 912–925 (2013). https://doi.org/10.1134/S1063776113130074

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776113130074

Keywords

Navigation