Skip to main content
Log in

Interstellar Extinction at High Galactic Latitudes: An Analytical Approximation

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Distance dependences of interstellar extinction (\({{A}_{V}}(d)\)) for a number of high-latitude areas of the southern sky were obtained using the data of the RAVE DR6 spectroscopic survey and the Gaia DR2/EDR3 astrometric survey. These dependencies were approximated by the classical barometric function (cosecant law). Function parameters were then approximated by spherical functions. The resulting analytical 3D model of interstellar extinction AV  can be used to estimate the values of \({{A}_{{{\text{Gal}}}}}\) for the stars in the Galaxy with known parallaxes, as well as the total (galactic) extinction values in a given direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. http://www.pas.rochester.edu/~emamajek/EEM_dwarf_UBVIJHK_colors_Teff.txt

  2. https://irsa.ipac.caltech.edu/applications/DUST/.

REFERENCES

  1. P. P. Parenago, Astron. Zh. 13, 3 (1940).

    Google Scholar 

  2. G. de Vaucouleurs, A. de Vaucouleurs, and J. R. Corwin, Second Reference Catalogue of Bright Galaxies (Univ. Texas Press, Austin, 1976).

  3. A. Sandage, Astrophys J. 178, 1 (1972).

    Article  ADS  Google Scholar 

  4. L. Spitzer, Physical Processes in the Interstellar Medium (Wiley-Interscience, New York, 1978).

    Google Scholar 

  5. P. P. Parenago, Popular Astron. 53, 441 (1945).

    ADS  Google Scholar 

  6. A. S. Sharov, Sov. Astron. 40, 900 (1963).

    Google Scholar 

  7. K. Pandey and H. S. Mahra, Mon. Not. R. Astron. Soc. 226, 635 (1987).

    Article  ADS  Google Scholar 

  8. D. J. Marshall, A. C. Robin, C. Reylé, M. Schultheis, and S. Picaud, Astron. Astrophys. 453, 635 (2006).

    Article  ADS  Google Scholar 

  9. M. P. Fitzgerald, Astron. J. 73, 983 (1968).

    Article  ADS  Google Scholar 

  10. T. Neckel and G. Klare, Astron. Astrophys. Suppl. Ser. 42, 251 (1980).

    ADS  Google Scholar 

  11. F. Arenou, M. Grenon, and A. Gomez, Astron. Astrophys. 258, 104 (1992).

    ADS  Google Scholar 

  12. G. A. Gontcharov, Astron. Lett. 35, 780 (2009).

    Article  ADS  Google Scholar 

  13. G. A. Gontcharov and A. V. Mosenkov, Mon. Not. R. Astron. Soc. 500, 2590 (2021).

    Article  ADS  Google Scholar 

  14. G. A. Gontcharov and A. V. Mosenkov, Mon. Not. R. Astron. Soc. 500, 2607 (2021).

    Article  ADS  Google Scholar 

  15. G. A. Gontcharov, Astron. Lett. 38, 12 (2012).

    Article  ADS  Google Scholar 

  16. O. Malkov and E. Kilpio, Astrophys. Space Sci. 280, 115 (2002).

    Article  ADS  Google Scholar 

  17. E. Y. Kil’pio and O. Y. Malkov, Astron. Rep. 41, 10 (1997).

    ADS  Google Scholar 

  18. P. B. Lucke, Astron. Astrophys. 64, 367 (1978).

    ADS  Google Scholar 

  19. R. Drimmel, A. Cabrera-Lavers, and M. López-Corredoira, Astron. Astrophys. 409, 205 (2003).

    Article  ADS  Google Scholar 

  20. A. Abergel, P. A. R. Ade, N. Aghanim, M. I. R. Alves, et al., Astron. Astrophys. 571, A11 (2014).

    Article  Google Scholar 

  21. S. E. Sale, J. E. Drew, G. Barentsen, H. J. Farnhill, et al., Mon. Not. R. Astron. Soc. 443, 2907 (2014).

    Article  ADS  Google Scholar 

  22. G. M. Green, E. F. Schlafly, D. P. Finkbeiner, H.‑W. Rix, et al., Astrophys. J. 810, 25 (2015).

    Article  ADS  Google Scholar 

  23. R. Lallement, L. Capitanio, L. Ruiz-Dern, C. Danielski, et al., Astron. Astrophys. 616, A132 (2018).

    Article  Google Scholar 

  24. R. Lallement, C. Babusiaux, J. L. Vergely, D. Katz, F. Arenou, B. Valette, C. Hottier, and L. Capitanio, Astron. Astrophys. 625, A135 (2019).

    Article  ADS  Google Scholar 

  25. G. M. Green, E. Schlafly, C. Zucker, J. S. Speagle, and D. Finkbeiner, Astrophys. J. 887, 93 (2019).

    Article  ADS  Google Scholar 

  26. B. Q. Chen, Y. Huang, H. B. Yuan, C. Wang, et al., Mon. Not. R. Astron. Soc. 483, 4277 (2019).

    Article  ADS  Google Scholar 

  27. R. H. Leike, M. Glatzle, and T. A. Enßlin, Astron. Astrophys. 639, A138 (2020).

    Article  ADS  Google Scholar 

  28. D. D. Burstein and C. Heiles, Astron. J. 87, 1165 (1982).

    Article  ADS  Google Scholar 

  29. D. J. Schlegel, D. P. Finkbeiner, and M. Davis, Astrophys J. 500, 525 (1998).

    Article  ADS  Google Scholar 

  30. E. F. Schlafly and D. P. Finkbeiner, Astrophys. J. 737, 103 (2011).

    Article  ADS  Google Scholar 

  31. J. A. Cardelli, G. C. Clayton, and J. S. Mathis, Astrophys. J. 345, 245 (1989).

    Article  ADS  Google Scholar 

  32. J. E. O’Donnell, Astrophys J. 437, 262 (1994).

    Article  ADS  Google Scholar 

  33. M. A. Fluks, B. Plez, P. S. The, D. de Winter, B. E. Westerlund, and H. C. Steenman, Astrophys. J. Suppl. 105, 311 (1994).

    Google Scholar 

  34. K. A. Larson and D. C. B. Whittet, Astrophys. J. 623, 897 (2005).

    Article  ADS  Google Scholar 

  35. E. L. Fitzpatrick and D. Massa, Astrophys. J. 663, 320 (2007).

    Article  ADS  Google Scholar 

  36. K. D. Gordon, S. Cartledge, and G. C. Clayton, Astrophys. J. 705, 1320 (2009).

    Article  ADS  Google Scholar 

  37. A. Nekrasov, K. Grishin, D. Kovaleva, and O. Malkov, Eur. Phys. J. Spec. Top. 230, 2193 (2021).

    Article  Google Scholar 

  38. M. Steinmetz, G. Guiglion, P. J. McMillan, G. Matijevi, et al., Astron. J. 160, 83 (2020).

    Article  ADS  Google Scholar 

  39. A. Kunder, G. Kordopatis, M. Steinmetz, T. Zwitter, et al., Astron. J. 153, 75 (2017).

    Article  ADS  Google Scholar 

  40. T. Prusti, J. H. J. de Bruijne, A. G. A. Brown, A. Vallenari, et al., Astron. Astrophys. 595, A1 (2016).

    Article  Google Scholar 

  41. A. G. A. Brown, A. Vallenari, T. Prusti, J. H. J. de Bruijne, et al., Astron. Astrophys. 650, C3 (2021); arXiv: 2012.01533 [astro-ph.GA].

    Article  Google Scholar 

  42. G. Bono, G. Iannicola, V. F. Braga, I. Ferraro, et al., Astrophys. J. 870, 115 (2019).

    Article  ADS  Google Scholar 

  43. S. Wang and X. Chen, Astrophys. J. 877, 116 (2019).

    Article  ADS  Google Scholar 

  44. C. Jordi, M. Gebran, J. M. Carrasco, J. de Bruijne, et al., Astron. Astrophys. 523, A48 (2010).

    Article  Google Scholar 

  45. C. A. L. Bailer-Jones, J. Rybizki, M. Fouesneau, G. Mantelet, and R. Andrae, Astron. J. 156, 58 (2018).

    Article  ADS  Google Scholar 

  46. D. W. Evans, M. Riello, F. de Angeli, J. M. Carrasco, et al., Astron. Astrophys. 616, A4 (2018).

    Article  Google Scholar 

  47. C. Danielski, C. Babusiaux, L. Ruiz-Dern, P. Sartoretti, and F. Arenou, Astron. Astrophys. 614, A19 (2018).

    Article  ADS  Google Scholar 

  48. C. Babusiaux, F. van Leeuwen, M. A. Barstow, C. Jordi, et al., Astron. Astrophys. 616, A10 (2018).

    Article  Google Scholar 

  49. C. A. L. Bailer-Jones, Mon. Not. R. Astron. Soc. 411, 435 (2011).

    Article  ADS  Google Scholar 

  50. M. J. Pecaut and E. E. Mamajek, Astrophys. J. Suppl. 208, 9 (2013).

    Article  Google Scholar 

  51. M. Newville, T. Stensitzki, D. B. Allen, and A. Ingargiola, LMFIT: Non-Linear Least-Square Minimization and Curve-Fitting for Python (2014). https://doi.org/10.5281/zenodo.11813

  52. J. Reis, D. Poznanski, D. Baron, G. Zasowski, and S. Shahaf, Mon. Not. R. Astron. Soc. 476, 2117 (2018).

    ADS  Google Scholar 

  53. B. Yanny, C. Rockosi, H. J. Newberg, G. R. Knapp, et al., Astron. J. 137, 4377 (2009).

    Article  ADS  Google Scholar 

  54. D. J. B. Smith, P. N. Best, K. J. Duncan, N. A. Hatch, et al., in Proceedings of the Annual Meeting of the French Society of Astronomy and Astrophysics SF2A-2016, Lyon, June 14–17, 2016, Ed. by C. Reylé, J. Richard, L. Cambrésy, M. Deleuil, E. Péontal, L. Tresse, and I. Vauglin (2016), p. 271. http://hdl.handle.net/20.500.12386/24322.

  55. R. S. de Jong, O. Agertz, A. A. Berbel, J. Aird, et al., Messenger 175, 3 (2019).

    ADS  Google Scholar 

  56. M. Cirasuolo and MOONS Consortium, in Multi-Object Spectroscopy in the Next Decade: Big Questions, Large Surveys, and Wide Fields, Proceedings of a Conference, Santa Cruz de La Palma, Canary Islands, Spain, March 2–6, 2015, Ed. by I. Skillen, M. Balcells, and S. Trager, ASP Conf. Ser. 507, 109 (2016).

  57. M. B. Taylor, in Astronomical Data Analysis Software and Systems XIV, Proceedings of the Conference, October 24–27, 2004, Pasadena, CA, Ed. by P. Shopbell, M. Britton, and R. Ebert, ASP Conf. Ser. 347, 29 (2005).

Download references

ACKNOWLEDGMENTS

The authors acknowledge the referee of the paper for the comments, which helped to improve it significantly. The authors would like to thank Kirill Grishin for his help and Eric Mamajek for the calibration tables. We have made use of NASA ADS bibliographic system and the Topcat package [57].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Yu. Malkov.

Additional information

Translated by L. Yungelson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malkov, O.Y., Avdeeva, A.S., Kovaleva, D.A. et al. Interstellar Extinction at High Galactic Latitudes: An Analytical Approximation. Astron. Rep. 66, 526–534 (2022). https://doi.org/10.1134/S1063772922070046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772922070046

Keywords:

Navigation