Skip to main content
Log in

Approximate analytical description of the high latitude extinction

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The distribution of visual interstellar extinction \(A_V\) has been mapped in selected areas over the Northern sky, using available LAMOST DR5 and Gaia DR2/EDR3 data. \(A_V\) was modelled as a barometric function of galactic latitude and distance. The function parameters were then approximated by spherical harmonics. The resulting analytical tridimensional model of the interstellar extinction can be used to predict \(A_V\) values for stars with known parallaxes, as well as the total Galactic extinction in a given location in the sky.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P.P. Parenago, Astron. Zh. 13, 3 (1940)

    Google Scholar 

  2. G. de Vaucouleurs, A. de Vaucouleurs, J.R. Corwin, Second reference catalogue of bright galaxies (1976)

  3. A. Sandage, Astrophys. J. 178, 1 (1972)

    Article  ADS  Google Scholar 

  4. L. Spitzer, Physical processes in the interstellar medium (1978)

  5. P.P. Parenago, Popul. Astron. 53, 441 (1945)

    ADS  Google Scholar 

  6. A.S. Sharov, Astron. Zh. 40, 900 (1963)

    ADS  Google Scholar 

  7. A.K. Pandey, H.S. Mahra, Mon. Not. R. Astron. Soc. 226, 635 (1987)

    Article  ADS  Google Scholar 

  8. D.J. Marshall, A.C. Robin, C. Reylé, M. Schultheis, S. Picaud, Astron. Astrophys. 453, 635 (2006)

    Article  ADS  Google Scholar 

  9. M.P. Fitzgerald, Astron. J. 73, 983 (1968)

    Article  ADS  Google Scholar 

  10. T. Neckel, G. Klare, Astron. Astrophys. Suppl. Ser. 42, 251 (1980)

    ADS  Google Scholar 

  11. F. Arenou, M. Grenon, A. Gomez, Astron. Astrophys. 258, 104 (1992)

    ADS  Google Scholar 

  12. O. Malkov, E. Kilpio, Astrophys. Space Sci. 280, 115 (2002)

    Article  ADS  Google Scholar 

  13. E.Y. Kil Pio, O.Y. Malkov, Astron. Rep. 41, 10 (1997)

    ADS  Google Scholar 

  14. P.B. Lucke, Astron. Astrophys. 64, 367 (1978)

    ADS  Google Scholar 

  15. R. Drimmel, A. Cabrera-Lavers, M. López-Corredoira, Astron. Astrophys. 409, 205 (2003)

    Article  ADS  Google Scholar 

  16. Planck Collaboration, A. Abergel, P. A. R. Ade, N. Aghanim, et al., Astron. Astrophys. , 571, A11, 2014

  17. S.E. Sale, J.E. Drew, G. Barentsen, H.J. Farnhill et al., Mon. Not. R. Astron. Soc. 443, 2907 (2014)

    Article  ADS  Google Scholar 

  18. G.M. Green et al., Astrophys. J. 810, 25 (2015)

    Article  ADS  Google Scholar 

  19. R. Lallement, L. Capitanio, L. Ruiz-Dern, C. Danielski et al., Astron. Astrophys. 616, A132 (2018)

    Article  Google Scholar 

  20. G.M. Green, E. Schlafly, C. Zucker, J.S. Speagle, D. Finkbeiner, Astrophys. J. 887, 93 (2019)

    Article  ADS  Google Scholar 

  21. B.Q. Chen, Y. Huang, H.B. Yuan, C. Wang et al., Mon. Not. R. Astron. Soc. 483, 4277 (2019)

    Article  ADS  Google Scholar 

  22. D.J. Schlegel, D.P. Finkbeiner, M. Davis, Astrophys. J. 500, 525 (1998)

    Article  ADS  Google Scholar 

  23. E.F. Schlafly, D.P. Finkbeiner, Astrophys. J. 737, 103 (2011)

    Article  ADS  Google Scholar 

  24. J.A. Cardelli, G.C. Clayton, J.S. Mathis, Astrophys. J. 345, 245 (1989)

    Article  ADS  Google Scholar 

  25. J.E. ODonnell, Astrophys. J. 437, 262 (1994)

    Article  ADS  Google Scholar 

  26. M.A. Fluks, B. Plez, P.S. The, D. de Winter, B.E. Westerlund, H.C. Steenman, Astron. Astrophys. Suppl. Ser. 105, 311 (1994)

    ADS  Google Scholar 

  27. K.A. Larson, D.C.B. Whittet, Astrophys. J. 623, 897 (2005)

    Article  ADS  Google Scholar 

  28. E.L. Fitzpatrick, D. Massa, Astrophys. J. 663, 320 (2007)

    Article  ADS  Google Scholar 

  29. K.D. Gordon, S. Cartledge, G.C. Clayton, Astrophys. J. 705, 1320 (2009)

    Article  ADS  Google Scholar 

  30. A. L. Luo, Y. H. Zhao, G. Zhao et al., VizieR online data catalog, V/164 (2019)

  31. G. Collaboration, T. Prusti, J.H.J. de Bruijne, A.G.A. Brown et al., Astron. Astrophys. 595, A1 (2016)

    Article  Google Scholar 

  32. G. Collaboration, A.G.A. Brown, A. Vallenari, T. Prusti et al., Astron. Astrophys. 616, A1 (2018)

    Article  Google Scholar 

  33. Gaia Collaboration, A. G. A. Brown, A. Vallenari, T. Prusti, J. H. J. de Bruijne, C. Babusiaux, M. Biermann, Gaia early data release 3: summary of the contents and survey properties, (2020)

  34. G. Bono, G. Iannicola, V.F. Braga, I. Ferraro et al., Astrophys. J. 870, 115 (2019)

    Article  ADS  Google Scholar 

  35. C. Jordi, M. Gebran, J.M. Carrasco, J. de Bruijne et al., Astron. Astrophys. 523, A48 (2010)

    Article  Google Scholar 

  36. C.A.L. Bailer-Jones, J. Rybizki, M. Fouesneau, G. Mantelet, R. Andrae, Astron. J. 156, 58 (2018)

    Article  ADS  Google Scholar 

  37. D.W. Evans, M. Riello, F. De Angeli, J.M. Carrasco et al., Astron. Astrophys. 616, A4 (2018)

    Article  Google Scholar 

  38. C. Danielski, C. Babusiaux, L. Ruiz-Dern, P. Sartoretti, F. Arenou, Astron. Astrophys. 614, A19 (2018)

    Article  ADS  Google Scholar 

  39. Gaia Collaboration, C. Babusiaux, F. van Leeuwen, M. A. Barstow, et al., Astron. Astrophys. , 616, A10, 2018

  40. C.A.L. Bailer-Jones, Mon. Not. R. Astron. Soc. 411, 435 (2011)

    Article  ADS  Google Scholar 

  41. M.J. Pecaut, E.E. Mamajek, Astrophys. J. Suppl. Ser. 208, 9 (2013)

  42. M. Newville, T. Stensitzki, D. B. Allen, and A. Ingargiola, LMFIT: non-linear least-square minimization and curve-fitting for python, (2014), https://doi.org/10.5281/zenodo.11813

  43. R. Lallement, C. Babusiaux, J.L. Vergely, D. Katz, F. Arenou, B. Valette, C. Hottier, L. Capitanio, Astron. Astrophys. 625, A135 (2019)

    Article  ADS  Google Scholar 

  44. F. Anders, A. Khalatyan, C. Chiappini, A.B. Queiroz et al., Astron. Astrophys. 628, A94 (2019)

    Article  Google Scholar 

  45. A. Kunder et al., Astron. J. 153, 75 (2017)

    Article  ADS  Google Scholar 

  46. R.S. de Jong, O. Agertz, A.A. Berbel, J. Aird et al., Messenger 175, 3 (2019)

    ADS  Google Scholar 

  47. M. Cirasuolo and MOONS Consortium, in I. Skillen, M. Balcells, and S. Trager, eds., Multi-Object Spectroscopy in the Next Decade: Big Questions, Large Surveys, and Wide Fields, Astronomical Society of the Pacific Conference Series, volume 507, 109 (2016)

  48. I. Reis, D. Poznanski, D. Baron, G. Zasowski, S. Shahaf, Mon. Not. R. Astron. Soc. 476, 2117 (2018)

    Article  ADS  Google Scholar 

  49. B. Yanny et al., Astron. J. 137, 4377 (2009)

    Article  ADS  Google Scholar 

  50. D.J.B. Smith et al, C. Reylé, J. Richard, L. Cambrésy, M. Deleuil, E. Pécontal, L. Tresse, I. Vauglin (eds.), SF2A-2016: proceedings of the annual meeting of the French society of astronomy and astrophysics

  51. M. B. Taylor, in P. Shopbell, M. Britton, and R. Ebert (eds.) Astronomical data analysis software and systems XIV, Astronomical society of the Pacific conference series, 347, 29 (2005)

Download references

Acknowledgements

We are grateful to our reviewers whose constructive comments greatly helped us to improve the paper. We thank Alexei Sytov for valuable remarks and suggestions. The work was partly supported by NSFC/RFBR grant 20-52-53009. KG research was supported by the Russian Science Foundation (RScF) grant No. 17-72-20119. AN research has been supported by the Interdisciplinary Scientific and Educational School of Moscow University “Fundamental and Applied Space Research”. This research has made use of NASA’s Astrophysics Data System, and use of TOPCAT, an interactive graphical viewer and editor for tabular data [51].

Author information

Authors and Affiliations

Authors

Contributions

The authors made equal contribution to this work; OM wrote the paper.

Corresponding author

Correspondence to Oleg Malkov.

Appendices

Appendix A. Spherical harmonics

We use orthonormalized spherical harmonics \(Y_n^m\) to calculate 2D approximation of extinction parameters. Only real parts of harmonics are used, hence we use harmonics of non-negative order \(0 \le m \le n\). Therefore spherical harmonics are calculated by the following formulas:

$$\begin{aligned} Y_0^0 (l, b)&= \frac{1}{2} \sqrt{\frac{1}{\pi }}, \quad Y_1^0 (l, b) = \frac{1}{2} \sqrt{\frac{3}{\pi }} \cos b,\\ Y_1^1 (l, b)&= \frac{1}{2} \sqrt{\frac{3}{\pi }} \cos l \sin b, \quad Y_2^0 (l, b) = \frac{1}{4} \sqrt{\frac{5}{ \pi }} \left( 3 \cos ^2 b - 1\right) ,\\ Y_2^1 (l, b)&= \frac{1}{2} \sqrt{\frac{15}{\pi }} \cos l \sin b \cos b, \quad Y_2^2 (l, b) = \frac{1}{4} \sqrt{\frac{15}{\pi }} \cos 2 l \sin ^2 b. \end{aligned}$$
Fig. 12
figure 12

\(\chi ^2\) scan for 17777, 28666, 29945

Fig. 13
figure 13

Best-fit for 34455, 35483, 36249

Fig. 14
figure 14

\(\chi ^2\) scan for 34455, 35483, 36249

Fig. 15
figure 15

Best-fit for 47350, 49084, 62853

Fig. 16
figure 16

\(\chi ^2\) scan for 47350, 49084, 62853

Fig. 17
figure 17

Best-fit for 64053, 79217, 82277

Fig. 18
figure 18

\(\chi ^2\) scan for 64053, 79217, 82277

Fig. 19
figure 19

Best-fit for 83604, 84386, 84622

Fig. 20
figure 20

\(\chi ^2\) scan for 83604, 84386, 84622

Fig. 21
figure 21

Best-fit for 96855, 97942, 98650

Fig. 22
figure 22

\(\chi ^2\) scan for 96855, 97942, 98650

Fig. 23
figure 23

Best-fit for 99901, 100961, 112048

Fig. 24
figure 24

\(\chi ^2\) scan for 99901, 100961, 112048

Fig. 25
figure 25

Best-fit for 112305, 113239, 114025

Fig. 26
figure 26

\(\chi ^2\) scan for 112305, 113239, 114025

Fig. 27
figure 27

Best-fit for 136719, 137487, 138857

Fig. 28
figure 28

\(\chi ^2\) scan for 136719, 137487, 138857

Fig. 29
figure 29

Best-fit for 149151, 151503, 152806

Fig. 30
figure 30

\(\chi ^2\) scan for 149151, 151503, 152806

Fig. 31
figure 31

Best-fit for 160342, 161428, 162401

Fig. 32
figure 32

\(\chi ^2\) scan for 160342, 161428, 162401

Fig. 33
figure 33

Best-fit and \(\chi ^2\) scan for 178840

Appendix B. Figures 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33. Best-fit \(\chi ^2\) minimization and \(\chi ^2\) scan solutions for the areas used for determination of the interstellar extinction.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nekrasov, A., Grishin, K., Kovaleva, D. et al. Approximate analytical description of the high latitude extinction. Eur. Phys. J. Spec. Top. 230, 2193–2205 (2021). https://doi.org/10.1140/epjs/s11734-021-00210-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00210-0

Navigation