Skip to main content
Log in

Prolactin Signaling Pathways Determining Its Direct Effects on Kidneys in the Cholestasis of Pregnancy Model

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Cholestasis of pregnancy is a pathology associated with disruptions in the bile flow and dysregulation of salt and water homeostasis. Prolactin is one of the most important regulators of salt and water balance. Changes in the expression of long and short isoforms of the prolactin receptor (PrlR) and mediators of prolactin signaling were studied by immunoblotting and RT-qPCR in the rat kidney cortex and outer medulla in the model of cholestasis of pregnancy. Both PrlR isoforms were shown to participate in the effects of prolactin in cholestasis of pregnancy. Direct impact of prolactin on the kidney has been demonstrated: (i) mRNA expression of both PrlR isoforms in the kidney depended on the physiological conditions and prolactin levels; (ii) expression of pSTAT5, a key mediator of the long PrlR isoform signaling, was increased in animals with cholestasis of pregnancy; (iii) in the case of long PrlR isoform predomination, expression of mRNAs for the prolactin signaling inhibitors SOCS3 and PIAS3 was upregulated (the genes of these regulators contain STAT-responsive elements in their promoters); (iv) expression of the mRNA for galactose-1-phosphate uridyltransferase (GALT), a molecular target of the PrlR short isoform, was decreased in the kidney outer medulla.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CIS:

cytokine signaling suppressor

FOXO3:

forkhead 3 family transcription factor

GALT:

galactose-1-phosphate uridyltransferase

GAPDH:

glyceraldehyde-3-phos-phate dehydrogenase

HPRT:

hypoxanthine guanine phosphoribosyltransferase

JAK2:

Janus family non-receptor tyrosine kinase 2

PIAS3:

protein inhibitor of activated STAT 3

PrlR:

prolactin receptor

SOCS3:

cytokine signaling suppressor 3

STAT5A:

signal transducer and transcription activator 5A

STAT5B:

signal transducer and transcription activator 5B

References

  1. Gabzdyl, E. M., and Schlaeger, J. M. (2015) Intrahepatic cholestasis of pregnancy, J. Perinat. Neonat. Nurs., 29, 41–50, doi: 10.1097/JPN.0000000000000077.

    Article  Google Scholar 

  2. Lo, J. O., Shaffer, B. L., Allen, A. J., Little, S. E., Cheng, Y. W., and Caughey, A. B. (2015) Intrahepatic cholestasis of pregnancy and timing of delivery, J. Matern. Fetal Neonat. Med., 28, 2254–2258, doi: 10.3109/14767058.2014.984605.

    Article  Google Scholar 

  3. Simjak, P., Parizek, A., Vitek, L., Cerny, A., Adamcova, K., Koucky, M., and Starka, L. (2015) Fetal complications due to intrahepatic cholestasis of pregnancy, J. Perinat. Med., 43, 133–139, doi: 10.1515/jpm-2014-0089.

    Article  PubMed  Google Scholar 

  4. Geenes, V., and Williamson, C. (2009) Intrahepatic cholestasis of pregnancy, World J. Gastroenterol., 15, 2049–2066, doi: 10.3748/wjg.15.2049.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lee, N. M., and Brady, C. W. (2009) Liver disease in pregnancy, World J. Gastroenterol., 15, 897–906, doi: 10.3748/wjg.15.897.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ranta, T., Unnerus, H. A., Rossi, J., and Seppala, M. (1979) Elevated plasma prolactin concentration in cholestasis of pregnancy, Am. J. Obstet. Gynecol., 134, 1–3.

    Article  CAS  PubMed  Google Scholar 

  7. Fidchenko, Y. M., Kushnareva, N. S., and Smirnova, O. V. (2013) Effect of prolactin on water-salt metabolism in rat females in the model of cholestasis of pregnancy, Byull. Eksp. Biol. Med., 156, 767–770.

    Google Scholar 

  8. Goffin, V., and Touraine, P. (2015) The prolactin receptor as a therapeutic target in human diseases: browsing new potential indications, Expert Opin. Ther. Targets. 19, 1229–1244, doi: 10.1517/14728222.2015.1053209.

    Article  CAS  PubMed  Google Scholar 

  9. Marano, R. J., and Ben-Jonathan, N. (2014) Minireview: Extrapituitary prolactin: an update on the distribution, regulation, and functions, Mol. Endocrinol., 28, 622–633, doi: 10.1210/me.2013-1349.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Ignacak, A., Kasztelnik, M., Sliwa, T., Korbut, R. A., Rajda, K., and Guzik, T. J. (2012) Prolactin–not only lactotrophin. A “new” view of the “old” hormone, J. Physiol. Pharmacol., 63, 435–443.

    CAS  PubMed  Google Scholar 

  11. Abramicheva, P., Balakina, T., Bulaeva, O., Guseva, A., Lopina, O., and Smirnova, O. (2017) Role of Na+/K+ ATPase in natriuretic effect of prolactin in a model of cholestasis of pregnancy, Biochemistry.(Moscow), 82, 632–641, doi: 10.1134/S000629791705011X.

    Article  CAS  Google Scholar 

  12. Bulaeva, O. A., Abramicheva, P. A., Balakina, T. A., and Smirnova, O. V. (2016) The role of prolactin in regulation of bicarbonate dynamics in rat females in the model of cholestasis of pregnancy, Byull. Eksp. Biol. Med., 162, 559–562.

    Google Scholar 

  13. Aleksandrova, M. I., Kushnareva, N. S., and Smirnova, O. V. (2012) Specific features of prolactin receptor manifestation in the kidney tissue of rat females in cholestasis: the effect of hyperprolactinemia, Byull. Eksp. Biol. Med., 153, 434–437.

    Google Scholar 

  14. Boudreau, R. T. M., Sangster, S. M., Johnson, L. M., and Dauphinee, S. (2002) Implication of α4 phosphoprotein and the rapamycin-sensitive mammalian target-of-rapamycin pathway in prolactin receptor signaling, J. Endocrinol., 173, 493–506.

    Article  CAS  PubMed  Google Scholar 

  15. Ali, S., Pellegrini, I., and Kelly, P. A. (1991) A prolactin-dependent immune cell line (Nb2) expresses a mutant form of prolactin receptor, J. Biol. Chem., 266, 20110–20117.

    CAS  PubMed  Google Scholar 

  16. Bernard, V., Bouilly, J., Beau, I., Broutin, I., Chanson, P., Young, J., and Binart, N. (2016) Germline prolactin receptor mutation is not a major cause of sporadic prolactinoma in humans, Neuroendocrinology. 103, 738–745, doi: 10.1159/000442981.

    Article  CAS  PubMed  Google Scholar 

  17. Halperin, J., Devi, S. Y., Elizur, S., Stocco, C., Shehu, A., Rebourcet, D., and Gibori, G. (2008) Prolactin signaling through the short form of its receptor represses Forkhead transcription factor FOXO3 and its target gene galt. causing a severe ovarian defect, Mol. Endocrinol., 22, 513–522, doi: 10.1210/me.2007-0399.

    Article  CAS  PubMed  Google Scholar 

  18. Krebs, D. L., and Hilton, D. J. (2001) SOCS proteins: negative regulators of cytokine signaling, Stem Cells. 19, 378–387.

    Article  CAS  PubMed  Google Scholar 

  19. Moreno-Carranza, B., Goya-Arce, M., Vega, C., Adan, N., Triebel, J., Lopez-Barrera, F., and Clapp, C. (2013) Prolactin promotes normal liver growth, survival, and regeneration in rodents: effects on hepatic IL-6, suppressor of cytokine signaling-3, and angiogenesis, Am. J. Physiol., 305, R720-R726, doi: 10.1152/ajpregu.00282.2013.

    Article  CAS  PubMed  Google Scholar 

  20. Asad, M., Shewade, D. G., Koumaravelou, K., Abraham, B. K., Balasinor, N., and Ramaswamy, S. (2001) Effect of hyperprolactinemia as induced by pituitary homografts under kidney capsule on gastric and duodenal ulcers in rats, J. Pharm. Pharmacol., 53, 1541–1547, doi: 10.1211/0022357011777918.

    Article  CAS  PubMed  Google Scholar 

  21. Ose, K., Miyata, K., Yoshioka, K., and Okuno, Y. (2009) Effects of hyperprolactinemia on toxicological parameters and proliferation of islet cells in male rats, J. Toxicol. Sci., 34, 151–162, doi: 10.2131/jts.34.151.

    Article  CAS  PubMed  Google Scholar 

  22. Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., and Speleman, F. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes, Genome Biol., 3, 1–12, doi: 10.1186/gb-2002-3-7-research0034.

    Article  Google Scholar 

  23. Aleksandrova, M. I., Sirotina, N. S., and Smirnova, O. V. (2015) Possible recovery of manifestation of prolactin receptor and some of its target proteins in the liver and kidney cells of female rats after relief of cholestasis complicated and not complicated by hyperprolactinemia, Bull. Exp. Biol. Med., 159, 361–364, doi: 10.1007/s10517-015-2963-0.

    Article  CAS  PubMed  Google Scholar 

  24. Yonezawa, T., Chen, K. H., Ghosh, M. K., Rivera, L., Dill, R., Ma, L., and Walker, A. M. (2015) Anti-metastatic outcome of isoform-specific prolactin receptor targeting in breast cancer, Cancer Lett., 366, 84–92, doi: 10.1016/j.canlet.2015.06.010.

    Article  CAS  PubMed  Google Scholar 

  25. Tan, D., Johnson, D. A., Wu, W., Zeng, L., Chen, Y. H., Chen, W. Y., and Walker, A. M. (2005) Unmodified prolactin (PRL) and S179D PRL-initiated bioluminescence resonance energy transfer between homo- and hetero-pairs of long and short human PRL receptors in living human cells, Mol. Endocrinol., 19, 1291–1303, doi: https://doi.org/10.1210/me.2004-0304.

    Article  CAS  PubMed  Google Scholar 

  26. Devi, Y. S., Seibold, A. M., Shehu, A., Maizels, E., Halperin, J., Le, J., and Gibori, G. (2011) Inhibition of MAPK by prolactin signaling through the short form of its receptor in the ovary and decidua: involvement of a novel phosphatase, J. Biol. Chem., 286, 7609–7618, doi: https://doi.org/10.1074/jbc.M110.166603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Devi, Y. S., Shehu, A., Stocco, C., Halperin, J., Le, J., Seibold, A. M., and Gibori, G. (2009) Regulation of transcription factors and repression of Sp1 by prolactin signaling through the short isoform of its cognate receptor, Endocrinology. 150, 3327–3335, doi: https://doi.org/10.1210/en.2008-1719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Elsas, L. J., Lai, K., Saunders, C. J., and Langley, S. D. (2001) Functional analysis of the human galactose-1-phosphate uridyltransferase promoter in Duarte and LA variant galactosemia, Mol. Genet. Metab., 72, 297–305.

    Article  CAS  PubMed  Google Scholar 

  29. Bogorad, R. L., Smyslova, V. S., Smirnov, A. N., Rubtsov, P. M., and Smirnova, O. V. (2002) The ratio of prolactin receptor isoforms in rat hepatocytes: the effect of obstructive cholestasis, Mol. Biol. (Moscow). 36, 91–93.

    Article  CAS  PubMed  Google Scholar 

  30. Bogorad, R. L., Ostroukhova, T. Y., Orlova, A. N., Rubtsov, P. M., and Smirnova, O. V. (2006) Prolactin receptors in rat cholangiocytes: regulation of level and isoform ratio is sex independent, Biochemistry (Moscow). 71, 178–184, doi: https://doi.org/10.1134/S0006297906020106.

    Article  CAS  PubMed  Google Scholar 

  31. Ben-Jonathan, N., LaPensee, C. R., and LaPensee, E. W. (2008) What can we learn from rodents about prolactin in humans? Endocr. Rev., 29, 1–41, doi: https://doi.org/10.1210/er.2007-0017.

    Article  CAS  PubMed  Google Scholar 

  32. Bole-Feysot, C., Goffin, V., Edery, M., Binart, N., and Kelly, P. A. (1998) Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice, Endocr. Rev., 19, 225–268.

    Article  CAS  PubMed  Google Scholar 

  33. Hennighausen, L., and Robinson, G. W. (2008) Interpretation of cytokine signaling through the transcription factors, Genes Dev., 22, 711–721, doi: https://doi.org/10.1101/gad.1643908.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Copeland, N. G., Gilbert, D. J., Schindler, C., Zhong, Z., Wen, Z., Darnell, J. E., and Ihle, J. N. (1995) Distribution of the mammalian STAT gene family in mouse chromosomes, Genomics. 29, 225–228, doi: https://doi.org/10.1006/geno.1995.1235.

    Article  CAS  PubMed  Google Scholar 

  35. Smirnov, A. N. (2009) Hormonal mechanisms of sex differentiation of the liver: the modern concepts and problems, Ontogenez. 40, 334–354.

    CAS  PubMed  Google Scholar 

  36. Endo, T., Sasaki, A., Minoguchi, M., Joo, A., and Yoshimura, A. (2003) CIS1 interacts with the Y532 of the prolactin receptor and suppresses prolactin-dependent STAT5 activation, J. Biochem., 133, 109–113.

    Article  CAS  PubMed  Google Scholar 

  37. Matsumoto, A., Seki, Y., Kubo, M., Ohtsuka, S., Suzuki, A., Hayashi, I., Tsuji, K., Nakahata, T., Okabe, M., Yamada, S., and Yoshimura, A. (1999) Suppression of STAT5 functions in liver, mammary glands, and T cells in cytokine-inducible SH2-containing protein 1 transgenic mice, Mol. Cell. Biol., 19, 6396–6407, doi: https://doi.org/10.1128/MCB.19.9.6396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu, X., Robinson, G. W., Wagner, K. U., Garrett, L., Wynshaw-Boris, A., and Hennighausen, L. (1997) Stat5a is mandatory for adult mammary gland development and lactogenesis, Genes Dev., 11, 179–186, doi: https://doi.org/10.1101/gad.11.2.179.

    Article  CAS  PubMed  Google Scholar 

  39. Ormandy, C. J., Camus, A., Barra, J., Damotte, D., Lucas, B., Buteau, H., and Kelly, P. A. (1997) Null mutation of the prolactin receptor gene produces multiple reproductive defects in the mouse, Genes Dev., 11, 167–178, doi: https://doi.org/10.1101/gad.11.2.167.

    Article  CAS  PubMed  Google Scholar 

  40. Tonko-Geymayer, S., Goupille, O., Tonko, M., Soratroi, C., Yoshimura, A., Streuli, C., and Doppler, W. (2002) Regulation and function of the cytokine-inducible SH-2 domain proteins, CIS and SOCS3, in mammary epithelial cells, Mol. Endocrinol., 16, 1680–1695.

    Article  CAS  PubMed  Google Scholar 

  41. Tomic, S., Chughtai, N., and Ali, S. (1999) SOCS-1, -2, -3: selective targets and functions downstream of the prolactin receptor, Mol. Cell. Endocrinol., 158, 45–54, doi: https://doi.org/10.1016/S0303-7207(99)00180-X.

    Article  CAS  PubMed  Google Scholar 

  42. Rycyzyn, M. A., and Clevenger, C. V. (2002) The intranuclear prolactin/cyclophilin B complex as a transcriptional inducer, Proc. Natl. Acad. Sci. USA. 99, 6790–6795, doi: https://doi.org/10.1073/pnas.092160699.

    Article  CAS  PubMed  Google Scholar 

  43. Russell, D. L., and Richards, J. S. (1999) Differentiation-dependent prolactin responsiveness and stat (signal transducers and activators of transcription) signaling in rat ovarian cells, Mol. Endocrinol., 13, 2049–2064, doi: https://doi.org/10.1210/mend.13.12.0389.

    Article  CAS  PubMed  Google Scholar 

  44. Li, Y., Haar, C., Peppelenbosch, M. P., and van der Woude, C. J. (2012) SOCS3 in immune regulation of inflammatory bowel disease and inflammatory bowel disease-related cancer, Cytokine Growth Factor Rev., 23, 127–138, doi: https://doi.org/10.1016/j.cytogfr.2012.04.005.

    Article  CAS  PubMed  Google Scholar 

  45. Suzuki, A., Hanada, T., Mitsuyama, K., Yoshida, T., Kamizono, S., Hoshino, T., and Yoshimura, A. (2001) CIS3/SOCS3/SSI3 plays a negative regulatory role in STAT3 activation and intestinal inflammation, J. Exp. Med., 193, 471–482, doi: https://doi.org/10.1084/jem.193.4.471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Linke, A., Goren, I., Bo, M. R., Pfeilschifter, J., and Frank, S. (2010) The suppressor of cytokine signaling (SOCS)-3 determines keratinocyte proliferative and migratory potential during skin repair, J. Invest. Dermatol., 130, 876–885, doi: https://doi.org/10.1038/jid.2009.344.

    Article  CAS  PubMed  Google Scholar 

  47. Linke, A., Goren, I., Bo, M. R., Pfeilschifter, J., and Frank, S. (2010) Epithelial overexpression of SOCS-3 in transgenic mice exacerbates wound inflammation in the presence of elevated TGF-β1, J. Invest. Dermatol., 130, 866–875, doi: https://doi.org/10.1038/jid.2009.345.

    Article  CAS  PubMed  Google Scholar 

  48. Ivory, C. P. A., Wallace, L. E., McCafferty, D.-M., and Sigalet, D. L. (2008) Interleukin-10-independent anti-inflammatory actions of glucagon-like peptide 2, Am. J. Physiol. Gastrointest. Liver Physiol., 295, G1202-G1210, doi: https://doi.org/10.1152/ajpgi.90494.2008.

    Article  CAS  PubMed  Google Scholar 

  49. Ni, J., Shen, Y., Wang, Z., Shao, D. C., Liu, J., Fu, L. J., and Lu, L. M. (2014) Inhibition of STAT3 acetylation is associated with attenuated renal fibrosis in the obstructed kidney, Acta Pharmacol. Sin., 35, 1045–1054, doi: https://doi.org/10.1038/aps.2014.42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ma, J. Q., Ding, J., Xiao, Z. H., and Liu, C. M. (2014) Ursolic acid ameliorates carbon tetrachloride-induced oxidative DNA damage and inflammation in mouse kidney by inhibiting the STAT3 and NF-κB activities, Int. Immunopharmacol., 21, 389–395, doi: https://doi.org/10.1016/j.intimp.2014.05.022.

    Article  CAS  PubMed  Google Scholar 

  51. Yagil, Z., Nechushtan, H., Kay, G., Yang, C. M., Kemeny, D. M., and Razin, E. (2010) The enigma of the role of protein inhibitor of activated STAT3 (PIAS3) in the immune response, Trends Immunol., 31, 199–204, doi: https://doi.org/10.1016/j.it.2010.01.005.

    Article  CAS  PubMed  Google Scholar 

  52. Shuai, K. (2006) Regulation of cytokine signaling pathways by PIAS proteins, Cell Res., 16, 196–202, doi: https://doi.org/10.1038/sj.cr.7310027.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Abramicheva.

Ethics declarations

Conflict of interest. The authors declare no conflict of interest.

Compliance with ethical norms. All procedures involving animals were conducted in accordance with the regulations of the Biological Faculty Bioethics Committee, Lomonosov Moscow State University

Additional information

Russian Text © The Author(s), 2019, published in Biokhimiya, 2019, Vol. 84, No. 10, pp. 1500–1510.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abramicheva, P.A., Balakina, T.A., Morozov, I.A. et al. Prolactin Signaling Pathways Determining Its Direct Effects on Kidneys in the Cholestasis of Pregnancy Model. Biochemistry Moscow 84, 1204–1212 (2019). https://doi.org/10.1134/S0006297919100092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297919100092

Keywords

Navigation