CC BY-NC-ND 4.0 · Semin Liver Dis
DOI: 10.1055/a-2289-2298
Review Article

Molecular Genealogy of Metabolic-associated Hepatocellular Carcinoma

Takahiro Kodama
1   Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
,
Tetsuo Takehara
1   Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
› Author Affiliations
Funding This work was supported by the Japan Agency for Medical Research and Development under grant numbers JP23fk0210131 (T.K.), JP 23ama221410 (T.K.), and JP23ck0106793 (T.K.), and by a Grant-in-Aid for Scientific Research (T.K.) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan, under grant number 23H02893.


Abstract

This review examines the latest epidemiological and molecular pathogenic findings of metabolic-associated hepatocellular carcinoma (HCC). Its increasing prevalence is a significant concern and reflects the growing burden of obesity and metabolic diseases, including metabolic dysfunction-associated steatotic liver disease, formerly known as nonalcoholic fatty liver disease, and type 2 diabetes. Metabolic-associated HCC has unique molecular abnormality and distinctive gene expression patterns implicating aberrations in bile acid, fatty acid metabolism, oxidative stress, and proinflammatory pathways. Furthermore, a notable frequency of single nucleotide polymorphisms in genes such as patatin-like phospholipase domain-containing 3, transmembrane 6 superfamily member 2, glucokinase regulator, and membrane-bound O-acyltransferase domain-containing 7 has been observed. The tumor immune microenvironment of metabolic-associated HCC is characterized by unique phenotypes of macrophages, neutrophils, and T lymphocytes. Additionally, the pathogenesis of metabolic-associated HCC is influenced by abnormal lipid metabolism, insulin resistance, and dysbiosis. In conclusion, deciphering the intricate interactions among metabolic processes, genetic predispositions, inflammatory responses, immune regulation, and microbial ecology is imperative for the development of novel therapeutic and preventative measures against metabolic-associated HCC.



Publication History

Accepted Manuscript online:
18 March 2024

Article published online:
18 April 2024

© 2024. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Sung H, Ferlay J, Siegel RL. et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71 (03) 209-249
  • 2 Llovet JM, Kelley RK, Villanueva A. et al. Hepatocellular carcinoma. Nat Rev Dis Primers 2021; 7 (01) 6
  • 3 Huang DQ, El-Serag HB, Loomba R. Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 2021; 18 (04) 223-238
  • 4 Llovet JM, Willoughby CE, Singal AG. et al. Nonalcoholic steatohepatitis-related hepatocellular carcinoma: pathogenesis and treatment. Nat Rev Gastroenterol Hepatol 2023; 20 (08) 487-503
  • 5 Rinella ME, Lazarus JV, Ratziu V. et al; NAFLD Nomenclature consensus group. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J Hepatol 2023; 79 (06) 1542-1556
  • 6 Kucukoglu O, Sowa JP, Mazzolini GD, Syn WK, Canbay A. Hepatokines and adipokines in NASH-related hepatocellular carcinoma. J Hepatol 2021; 74 (02) 442-457
  • 7 Tokushige K. New concept in fatty liver diseases. Hepatol Res 2024; 54 (02) 125-130
  • 8 Hagström H, Vessby J, Ekstedt M, Shang Y. 99% of patients with NAFLD meet MASLD criteria and natural history is therefore identical. J Hepatol 2024; 80 (02) e76-e77
  • 9 Song SJ, Lai JC, Wong GL, Wong VW, Yip TC. Can we use old NAFLD data under the new MASLD definition?. J Hepatol 2024; 80 (02) e54-e56
  • 10 Anstee QM, Reeves HL, Kotsiliti E, Govaere O, Heikenwalder M. From NASH to HCC: current concepts and future challenges. Nat Rev Gastroenterol Hepatol 2019; 16 (07) 411-428
  • 11 Le MH, Yeo YH, Zou B. et al. Forecasted 2040 global prevalence of nonalcoholic fatty liver disease using hierarchical Bayesian approach. Clin Mol Hepatol 2022; 28 (04) 841-850
  • 12 Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016; 64 (01) 73-84
  • 13 Yatsuji S, Hashimoto E, Tobari M, Taniai M, Tokushige K, Shiratori K. Clinical features and outcomes of cirrhosis due to non-alcoholic steatohepatitis compared with cirrhosis caused by chronic hepatitis C. J Gastroenterol Hepatol 2009; 24 (02) 248-254
  • 14 Younossi Z, Stepanova M, Ong JP. et al; Global Nonalcoholic Steatohepatitis Council. Nonalcoholic steatohepatitis is the fastest growing cause of hepatocellular carcinoma in liver transplant candidates. Clin Gastroenterol Hepatol 2019; 17 (04) 748-755.e3
  • 15 Dyson J, Jaques B, Chattopadyhay D. et al. Hepatocellular cancer: the impact of obesity, type 2 diabetes and a multidisciplinary team. J Hepatol 2014; 60 (01) 110-117
  • 16 Pais R, Fartoux L, Goumard C. et al. Temporal trends, clinical patterns and outcomes of NAFLD-related HCC in patients undergoing liver resection over a 20-year period. Aliment Pharmacol Ther 2017; 46 (09) 856-863
  • 17 Tateishi R, Uchino K, Fujiwara N. et al. A nationwide survey on non-B, non-C hepatocellular carcinoma in Japan: 2011-2015 update. J Gastroenterol 2019; 54 (04) 367-376
  • 18 Ertle J, Dechêne A, Sowa JP. et al. Non-alcoholic fatty liver disease progresses to hepatocellular carcinoma in the absence of apparent cirrhosis. Int J Cancer 2011; 128 (10) 2436-2443
  • 19 Chayanupatkul M, Omino R, Mittal S. et al. Hepatocellular carcinoma in the absence of cirrhosis in patients with chronic hepatitis B virus infection. J Hepatol 2017; 66 (02) 355-362
  • 20 Zunica ERM, Heintz EC, Axelrod CL, Kirwan JP. Obesity management in the primary prevention of hepatocellular carcinoma. Cancers (Basel) 2022; 14 (16) 14
  • 21 Ward ZJ, Bleich SN, Cradock AL. et al. Projected U.S. state-level prevalence of adult obesity and severe obesity. N Engl J Med 2019; 381 (25) 2440-2450
  • 22 Park EJ, Lee JH, Yu GY. et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 2010; 140 (02) 197-208
  • 23 Sohn W, Lee HW, Lee S. et al. Obesity and the risk of primary liver cancer: a systematic review and meta-analysis. Clin Mol Hepatol 2021; 27 (01) 157-174
  • 24 Yan LJ, Yang LS, Yan YC. et al. Anthropometric indicators of adiposity and risk of primary liver cancer: a systematic review and dose-response meta-analysis. Eur J Cancer 2023; 185: 150-163
  • 25 Kanwal F, Kramer JR, Li L. et al. Effect of metabolic traits on the risk of cirrhosis and hepatocellular cancer in nonalcoholic fatty liver disease. Hepatology 2020; 71 (03) 808-819
  • 26 Kanwal F, Kramer JR, Mapakshi S. et al. Risk of hepatocellular cancer in patients with non-alcoholic fatty liver disease. Gastroenterology 2018; 155 (06) 1828-1837.e2
  • 27 Rustgi VK, Li Y, Gupta K. et al. Bariatric surgery reduces cancer risk in adults with nonalcoholic fatty liver disease and severe obesity. Gastroenterology 2021; 161 (01) 171-184.e10
  • 28 Li X, Wang X, Gao P. Diabetes mellitus and risk of hepatocellular carcinoma. BioMed Res Int 2017; 2017: 5202684
  • 29 Yang JD, Ahmed F, Mara KC. et al. Diabetes is associated with increased risk of hepatocellular carcinoma in patients with cirrhosis from nonalcoholic fatty liver disease. Hepatology 2020; 71 (03) 907-916
  • 30 Alexander M, Loomis AK, van der Lei J. et al. Risks and clinical predictors of cirrhosis and hepatocellular carcinoma diagnoses in adults with diagnosed NAFLD: real-world study of 18 million patients in four European cohorts. BMC Med 2019; 17 (01) 95
  • 31 Shibata T, Arai Y, Totoki Y. Molecular genomic landscapes of hepatobiliary cancer. Cancer Sci 2018; 109 (05) 1282-1291
  • 32 Rudolph KL, Hartmann D, Opitz OG. Telomere dysfunction and DNA damage checkpoints in diseases and cancer of the gastrointestinal tract. Gastroenterology 2009; 137 (03) 754-762
  • 33 Nault JC, Calderaro J, Di Tommaso L. et al. Telomerase reverse transcriptase promoter mutation is an early somatic genetic alteration in the transformation of premalignant nodules in hepatocellular carcinoma on cirrhosis. Hepatology 2014; 60 (06) 1983-1992
  • 34 Pinyol R, Torrecilla S, Wang H. et al. Molecular characterisation of hepatocellular carcinoma in patients with non-alcoholic steatohepatitis. J Hepatol 2021; 75 (04) 865-878
  • 35 Xu C, Xu Z, Zhang Y, Evert M, Calvisi DF, Chen X. β-Catenin signaling in hepatocellular carcinoma. J Clin Invest 2022; 132 (04) 132
  • 36 Schulze K, Imbeaud S, Letouzé E. et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat Genet 2015; 47 (05) 505-511
  • 37 Cancer Genome Atlas Research Network. Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma. Cell 2017; 169: 1327-1341.e23
  • 38 Murai H, Kodama T, Maesaka K. et al. Multiomics identifies the link between intratumor steatosis and the exhausted tumor immune microenvironment in hepatocellular carcinoma. Hepatology 2023; 77 (01) 77-91
  • 39 BasuRay S, Smagris E, Cohen JC, Hobbs HH. The PNPLA3 variant associated with fatty liver disease (I148M) accumulates on lipid droplets by evading ubiquitylation. Hepatology 2017; 66 (04) 1111-1124
  • 40 BasuRay S, Wang Y, Smagris E, Cohen JC, Hobbs HH. Accumulation of PNPLA3 on lipid droplets is the basis of associated hepatic steatosis. Proc Natl Acad Sci U S A 2019; 116 (19) 9521-9526
  • 41 Anstee QM, Darlay R, Cockell S. et al; EPoS Consortium Investigators. Genome-wide association study of non-alcoholic fatty liver and steatohepatitis in a histologically characterised cohort . J Hepatol 2020; 73 (03) 505-515
  • 42 Liu YL, Patman GL, Leathart JB. et al. Carriage of the PNPLA3 rs738409 C >G polymorphism confers an increased risk of non-alcoholic fatty liver disease associated hepatocellular carcinoma. J Hepatol 2014; 61 (01) 75-81
  • 43 Kozlitina J, Smagris E, Stender S. et al. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 2014; 46 (04) 352-356
  • 44 Liu YL, Reeves HL, Burt AD. et al. TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease. Nat Commun 2014; 5: 4309
  • 45 Perez-Martinez P, Delgado-Lista J, Garcia-Rios A. et al. Glucokinase regulatory protein genetic variant interacts with omega-3 PUFA to influence insulin resistance and inflammation in metabolic syndrome. PLoS ONE 2011; 6 (06) e20555
  • 46 Kimura M, Iguchi T, Iwasawa K. et al. En masse organoid phenotyping informs metabolic-associated genetic susceptibility to NASH. Cell 2022; 185 (22) 4216-4232.e16
  • 47 Tan HL, Zain SM, Mohamed R. et al. Association of glucokinase regulatory gene polymorphisms with risk and severity of non-alcoholic fatty liver disease: an interaction study with adiponutrin gene. J Gastroenterol 2014; 49 (06) 1056-1064
  • 48 Kawaguchi T, Shima T, Mizuno M. et al. Risk estimation model for nonalcoholic fatty liver disease in the Japanese using multiple genetic markers. PLoS ONE 2018; 13 (01) e0185490
  • 49 Mancina RM, Dongiovanni P, Petta S. et al. The MBOAT7-TMC4 variant rs641738 increases risk of nonalcoholic fatty liver disease in individuals of European descent. Gastroenterology 2016; 150 (05) 1219-1230.e6
  • 50 Donati B, Dongiovanni P, Romeo S. et al. MBOAT7 rs641738 variant and hepatocellular carcinoma in non-cirrhotic individuals. Sci Rep 2017; 7 (01) 4492
  • 51 Tepper CG, Dang JHT, Stewart SL. et al. High frequency of the PNPLA3 rs738409 [G] single-nucleotide polymorphism in Hmong individuals as a potential basis for a predisposition to chronic liver disease. Cancer 2018; 124 (Suppl. 07) 1583-1589
  • 52 Riazi K, Swain MG, Congly SE, Kaplan GG, Shaheen AA. Race and ethnicity in non-alcoholic fatty liver disease (NAFLD): a narrative review. Nutrients 2022; 14 (21) 14
  • 53 Hassan MM, Li D, Han Y. et al. Genome-wide association study identifies high-impact susceptibility loci for hepatocellular carcinoma in North America. Hepatology 2024; (e-pub ahead of print). DOI: 10.1097/hep.0000000000000800.
  • 54 El Jabbour T, Lagana SM, Lee H. Update on hepatocellular carcinoma: pathologists' review. World J Gastroenterol 2019; 25 (14) 1653-1665
  • 55 Shah PA, Patil R, Harrison SA. NAFLD-related hepatocellular carcinoma: the growing challenge. Hepatology 2023; 77 (01) 323-338
  • 56 Yang YM, Kim SY, Seki E. Inflammation and liver cancer: molecular mechanisms and therapeutic targets. Semin Liver Dis 2019; 39 (01) 26-42
  • 57 Luedde T, Schwabe RF. NF-κB in the liver–linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2011; 8 (02) 108-118
  • 58 He G, Karin M. NF-κB and STAT3 - key players in liver inflammation and cancer. Cell Res 2011; 21 (01) 159-168
  • 59 Grohmann M, Wiede F, Dodd GT. et al. Obesity drives STAT-1-dependent NASH and STAT-3-dependent HCC. Cell 2018; 175 (05) 1289-1306.e20
  • 60 Litwak SA, Pang L, Galic S. et al. JNK activation of BIM promotes hepatic oxidative stress, steatosis, and insulin resistance in obesity. Diabetes 2017; 66 (12) 2973-2986
  • 61 Das M, Garlick DS, Greiner DL, Davis RJ. The role of JNK in the development of hepatocellular carcinoma. Genes Dev 2011; 25 (06) 634-645
  • 62 Portincasa P, Bonfrate L, Khalil M. et al. Intestinal barrier and permeability in health, obesity and NAFLD. Biomedicines 2021; 10 (01) 10
  • 63 Heymann F, Tacke F. Immunology in the liver–from homeostasis to disease. Nat Rev Gastroenterol Hepatol 2016; 13 (02) 88-110
  • 64 Schuster S, Cabrera D, Arrese M, Feldstein AE. Triggering and resolution of inflammation in NASH. Nat Rev Gastroenterol Hepatol 2018; 15 (06) 349-364
  • 65 Xiong X, Kuang H, Ansari S. et al. Landscape of intercellular crosstalk in healthy and NASH liver revealed by single-cell secretome gene analysis. Mol Cell 2019; 75 (03) 644-660.e5
  • 66 Daemen S, Gainullina A, Kalugotla G. et al. Dynamic shifts in the composition of resident and recruited macrophages influence tissue remodeling in NASH. Cell Rep 2021; 34 (02) 108626
  • 67 Seidman JS, Troutman TD, Sakai M. et al. Niche-specific reprogramming of epigenetic landscapes drives myeloid cell diversity in nonalcoholic steatohepatitis. Immunity 2020; 52 (06) 1057-1074.e7
  • 68 Hwang S, Yun H, Moon S, Cho YE, Gao B. Role of neutrophils in the pathogenesis of nonalcoholic steatohepatitis. Front Endocrinol (Lausanne) 2021; 12: 751802
  • 69 van der Windt DJ, Sud V, Zhang H. et al. Neutrophil extracellular traps promote inflammation and development of hepatocellular carcinoma in nonalcoholic steatohepatitis. Hepatology 2018; 68 (04) 1347-1360
  • 70 Leslie J, Mackey JBG, Jamieson T. et al. CXCR2 inhibition enables NASH-HCC immunotherapy. Gut 2022; 71 (10) 2093-2106
  • 71 Wang H, Zhang H, Wang Y. et al. Regulatory T-cell and neutrophil extracellular trap interaction contributes to carcinogenesis in non-alcoholic steatohepatitis. J Hepatol 2021; 75 (06) 1271-1283
  • 72 Ostrand-Rosenberg S, Fenselau C. Myeloid-derived suppressor cells: immune-suppressive cells that impair antitumor immunity and are sculpted by their environment. J Immunol 2018; 200 (02) 422-431
  • 73 Tang W, Zhou J, Yang W. et al. Aberrant cholesterol metabolic signaling impairs antitumor immunosurveillance through natural killer T cell dysfunction in obese liver. Cell Mol Immunol 2022; 19 (07) 834-847
  • 74 Sutti S, Jindal A, Locatelli I. et al. Adaptive immune responses triggered by oxidative stress contribute to hepatic inflammation in NASH. Hepatology 2014; 59 (03) 886-897
  • 75 Luo XY, Takahara T, Kawai K. et al. IFN-γ deficiency attenuates hepatic inflammation and fibrosis in a steatohepatitis model induced by a methionine- and choline-deficient high-fat diet. Am J Physiol Gastrointest Liver Physiol 2013; 305 (12) G891-G899
  • 76 Moreno-Fernandez ME, Giles DA, Oates JR. et al. PKM2-dependent metabolic skewing of hepatic Th17 cells regulates pathogenesis of non-alcoholic fatty liver disease. Cell Metab 2021; 33 (06) 1187-1204.e9
  • 77 Ma C, Kesarwala AH, Eggert T. et al. NAFLD causes selective CD4(+) T lymphocyte loss and promotes hepatocarcinogenesis. Nature 2016; 531 (7593) 253-257
  • 78 Gomes AL, Teijeiro A, Burén S. et al. Metabolic inflammation-associated IL-17A causes non-alcoholic steatohepatitis and hepatocellular carcinoma. Cancer Cell 2016; 30 (01) 161-175
  • 79 Dudek M, Pfister D, Donakonda S. et al. Auto-aggressive CXCR6+ CD8 T cells cause liver immune pathology in NASH. Nature 2021; 592 (7854) 444-449
  • 80 Koda Y, Teratani T, Chu PS. et al. CD8+ tissue-resident memory T cells promote liver fibrosis resolution by inducing apoptosis of hepatic stellate cells. Nat Commun 2021; 12 (01) 4474
  • 81 Pfister D, Núñez NG, Pinyol R. et al. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature 2021; 592 (7854) 450-456
  • 82 Shalapour S, Lin XJ, Bastian IN. et al. Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity. Nature 2017; 551 (7680) 340-345
  • 83 Bruzzì S, Sutti S, Giudici G. et al. B2-lymphocyte responses to oxidative stress-derived antigens contribute to the evolution of nonalcoholic fatty liver disease (NAFLD). Free Radic Biol Med 2018; 124: 249-259
  • 84 Barrow F, Khan S, Fredrickson G. et al. Microbiota-driven activation of intrahepatic B cells aggravates NASH through innate and adaptive signaling. Hepatology 2021; 74 (02) 704-722
  • 85 Thapa M, Chinnadurai R, Velazquez VM. et al. Liver fibrosis occurs through dysregulation of MyD88-dependent innate B-cell activity. Hepatology 2015; 61 (06) 2067-2079
  • 86 Novobrantseva TI, Majeau GR, Amatucci A. et al. Attenuated liver fibrosis in the absence of B cells. J Clin Invest 2005; 115 (11) 3072-3082
  • 87 Faggioli F, Palagano E, Di Tommaso L. et al. B lymphocytes limit senescence-driven fibrosis resolution and favor hepatocarcinogenesis in mouse liver injury. Hepatology 2018; 67 (05) 1970-1985
  • 88 Zhang S, Liu Z, Wu D, Chen L, Xie L. Single-cell RNA-seq analysis reveals microenvironmental infiltration of plasma cells and hepatocytic prognostic markers in HCC with cirrhosis. Front Oncol 2020; 10: 596318
  • 89 Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 2012; 21 (03) 297-308
  • 90 Sunami Y, Rebelo A, Kleeff J. Lipid metabolism and lipid droplets in pancreatic cancer and stellate cells. Cancers (Basel) 2017; 10 (01) 10
  • 91 Budhu A, Roessler S, Zhao X. et al. Integrated metabolite and gene expression profiles identify lipid biomarkers associated with progression of hepatocellular carcinoma and patient outcomes. Gastroenterology 2013; 144 (05) 1066-1075.e1
  • 92 Sunami Y. NASH, fibrosis and hepatocellular carcinoma: lipid synthesis and glutamine/acetate signaling. Int J Mol Sci 2020; 21 (18) 21
  • 93 Esler WP, Cohen DE. Pharmacologic inhibition of lipogenesis for the treatment of NAFLD. J Hepatol 2024; 80 (02) 362-377
  • 94 Lambert JE, Ramos-Roman MA, Browning JD, Parks EJ. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology 2014; 146 (03) 726-735
  • 95 Icard P, Wu Z, Fournel L, Coquerel A, Lincet H, Alifano M. ATP citrate lyase: a central metabolic enzyme in cancer. Cancer Lett 2020; 471: 125-134
  • 96 Baenke F, Peck B, Miess H, Schulze A. Hooked on fat: the role of lipid synthesis in cancer metabolism and tumour development. Dis Model Mech 2013; 6 (06) 1353-1363
  • 97 Calvisi DF, Wang C, Ho C. et al. Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human hepatocellular carcinoma. Gastroenterology 2011; 140 (03) 1071-1083
  • 98 Li L, Pilo GM, Li X. et al. Inactivation of fatty acid synthase impairs hepatocarcinogenesis driven by AKT in mice and humans. J Hepatol 2016; 64 (02) 333-341
  • 99 Che L, Chi W, Qiao Y. et al. Cholesterol biosynthesis supports the growth of hepatocarcinoma lesions depleted of fatty acid synthase in mice and humans. Gut 2020; 69 (01) 177-186
  • 100 Lally JSV, Ghoshal S, DePeralta DK. et al. Inhibition of Acetyl-CoA carboxylase by phosphorylation or the inhibitor ND-654 suppresses lipogenesis and hepatocellular carcinoma. Cell Metab 2019; 29 (01) 174-182.e5
  • 101 Dhanasekaran R, Suzuki H, Lemaitre L, Kubota N, Hoshida Y. Molecular and immune landscape of hepatocellular carcinoma to guide therapeutic decision-making. Hepatology 2023; (e-pub ahead of print). DOI: 10.1097/hep.0000000000000513.
  • 102 Kotronen A, Seppänen-Laakso T, Westerbacka J. et al. Hepatic stearoyl-CoA desaturase (SCD)-1 activity and diacylglycerol but not ceramide concentrations are increased in the nonalcoholic human fatty liver. Diabetes 2009; 58 (01) 203-208
  • 103 Yamashita T, Honda M, Takatori H. et al. Activation of lipogenic pathway correlates with cell proliferation and poor prognosis in hepatocellular carcinoma. J Hepatol 2009; 50 (01) 100-110
  • 104 Li C, Yang W, Zhang J. et al. SREBP-1 has a prognostic role and contributes to invasion and metastasis in human hepatocellular carcinoma. Int J Mol Sci 2014; 15 (05) 7124-7138
  • 105 Régnier M, Carbinatti T, Parlati L, Benhamed F, Postic C. The role of ChREBP in carbohydrate sensing and NAFLD development. Nat Rev Endocrinol 2023; 19 (06) 336-349
  • 106 Lee SH, Lee JH, Im SS. The cellular function of SCAP in metabolic signaling. Exp Mol Med 2020; 52 (05) 724-729
  • 107 Kawamura S, Matsushita Y, Kurosaki S. et al. Inhibiting SCAP/SREBP exacerbates liver injury and carcinogenesis in murine nonalcoholic steatohepatitis. J Clin Invest 2022; 132 (11) 132
  • 108 Zhu L, Baker SS, Liu W. et al. Lipid in the livers of adolescents with nonalcoholic steatohepatitis: combined effects of pathways on steatosis. Metabolism 2011; 60 (07) 1001-1011
  • 109 Greco D, Kotronen A, Westerbacka J. et al. Gene expression in human NAFLD. Am J Physiol Gastrointest Liver Physiol 2008; 294 (05) G1281-G1287
  • 110 Nath A, Li I, Roberts LR, Chan C. Elevated free fatty acid uptake via CD36 promotes epithelial-mesenchymal transition in hepatocellular carcinoma. Sci Rep 2015; 5: 14752
  • 111 Westerbacka J, Kolak M, Kiviluoto T. et al. Genes involved in fatty acid partitioning and binding, lipolysis, monocyte/macrophage recruitment, and inflammation are overexpressed in the human fatty liver of insulin-resistant subjects. Diabetes 2007; 56 (11) 2759-2765
  • 112 Higuchi N, Kato M, Tanaka M. et al. Effects of insulin resistance and hepatic lipid accumulation on hepatic mRNA expression levels of apoB, MTP and L-FABP in non-alcoholic fatty liver disease. Exp Ther Med 2011; 2 (06) 1077-1081
  • 113 Jeon SM, Chandel NS, Hay N. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 2012; 485 (7400) 661-665
  • 114 Yuan H, Wen B, Liu X. et al. CCAAT/enhancer-binding protein α is required for hepatic outgrowth via the p53 pathway in zebrafish. Sci Rep 2015; 5: 15838
  • 115 Fang C, Pan J, Qu N. et al. The AMPK pathway in fatty liver disease. Front Physiol 2022; 13: 970292
  • 116 Iwamoto H, Abe M, Yang Y. et al. Cancer lipid metabolism confers antiangiogenic drug resistance. Cell Metab 2018; 28 (01) 104-117.e5
  • 117 Huang D, Li T, Li X. et al. HIF-1-mediated suppression of acyl-CoA dehydrogenases and fatty acid oxidation is critical for cancer progression. Cell Rep 2014; 8 (06) 1930-1942
  • 118 Zhang J, Liu Z, Lian Z. et al. Monoacylglycerol lipase: a novel potential therapeutic target and prognostic indicator for hepatocellular carcinoma. Sci Rep 2016; 6: 35784
  • 119 Cao D, Song X, Che L. et al. Both de novo synthetized and exogenous fatty acids support the growth of hepatocellular carcinoma cells. Liver Int 2017; 37 (01) 80-89
  • 120 Shao G, Liu Y, Lu L. et al. The pathogenesis of HCC driven by NASH and the preventive and therapeutic effects of natural products. Front Pharmacol 2022; 13: 944088
  • 121 Tanaka S, Mohr L, Schmidt EV, Sugimachi K, Wands JR. Biological effects of human insulin receptor substrate-1 overexpression in hepatocytes. Hepatology 1997; 26 (03) 598-604
  • 122 Rajesh Y, Sarkar D. Molecular mechanisms regulating obesity-associated hepatocellular carcinoma. Cancers (Basel) 2020; 12 (05) 12
  • 123 Shiode Y, Kodama T, Shigeno S. et al. TNF receptor-related factor 3 inactivation promotes the development of intrahepatic cholangiocarcinoma through NF-κB-inducing kinase-mediated hepatocyte transdifferentiation. Hepatology 2023; 77 (02) 395-410
  • 124 Kodama T, Yi J, Newberg JY. et al. Molecular profiling of nonalcoholic fatty liver disease-associated hepatocellular carcinoma using SB transposon mutagenesis. Proc Natl Acad Sci U S A 2018; 115 (44) E10417-E10426
  • 125 Shimano H, Sato R. SREBP-regulated lipid metabolism: convergent physiology - divergent pathophysiology. Nat Rev Endocrinol 2017; 13 (12) 710-730
  • 126 Postic C, Girard J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Invest 2008; 118 (03) 829-838
  • 127 Kaji K, Yoshiji H, Kitade M. et al. Impact of insulin resistance on the progression of chronic liver diseases. Int J Mol Med 2008; 22 (06) 801-808
  • 128 Cai W, Ma Y, Song L. et al. IGF-1R down regulates the sensitivity of hepatocellular carcinoma to sorafenib through the PI3K/akt and RAS/raf/ERK signaling pathways. BMC Cancer 2023; 23 (01) 87
  • 129 Fan W, Adebowale K, Váncza L. et al. Matrix viscoelasticity promotes liver cancer progression in the pre-cirrhotic liver. Nature 2024; 626 (7999) 635-642
  • 130 Ponziani FR, Bhoori S, Castelli C. et al. Hepatocellular carcinoma is associated with gut microbiota profile and inflammation in nonalcoholic fatty liver disease. Hepatology 2019; 69 (01) 107-120
  • 131 Liakina V, Strainiene S, Stundiene I, Maksimaityte V, Kazenaite E. Gut microbiota contribution to hepatocellular carcinoma manifestation in non-alcoholic steatohepatitis. World J Hepatol 2022; 14 (07) 1277-1290
  • 132 Yoshimoto S, Loo TM, Atarashi K. et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 2013; 499 (7456) 97-101
  • 133 Yamagishi R, Kamachi F, Nakamura M. et al. Gasdermin D-mediated release of IL-33 from senescent hepatic stellate cells promotes obesity-associated hepatocellular carcinoma. Sci Immunol 2022; 7 (72) eabl7209
  • 134 Loo TM, Kamachi F, Watanabe Y. et al. Gut microbiota promotes obesity-associated liver cancer through PGE2-mediated suppression of antitumor immunity. Cancer Discov 2017; 7 (05) 522-538
  • 135 Gäbele E, Mühlbauer M, Dorn C. et al. Role of TLR9 in hepatic stellate cells and experimental liver fibrosis. Biochem Biophys Res Commun 2008; 376 (02) 271-276