Skip to main content
Log in

Variability in chlorophyll fluorescence spectra of eggplant fruit grown under different light environments: a case study

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

abstract

The main goal of the present work was to clarify physiological strategies in plants whose chloroplasts were developed under different light environments. The specific objective was to elucidate the influence of the spectral distribution of light on the chlorophyll fluorescence ratio and on photosynthetic parameters. To achieve this purpose, three species of eggplant fruit (black, purple and white striped and white) were used as a case study and their chlorophyll fluorescence was analyzed in detail. Spectra of the non-variable fluorescence in each part of the fruit were corrected for distortions by light reabsorption processes using a physical model. The main conclusion of this work was that the corrected fluorescence ratio was dependent on the contribution of each photosystem to the fluorescence and consequently on the environmental lighting conditions, becoming higher when illumination was rich in long wavelengths. Variable chlorophyll fluorescence, similar to that observed from plant leaves, was detected for the pulp of the black eggplant, for the pulp of the purple and white striped eggplant and for the intact fruit of the black eggplant. The maximum quantum efficiency of photosystem II. in the light-adapted state (F’v/F’m), the quantum efficiency of photosystem II (ϕ5PS), and the photochemical and non-photochemical quenching coefficients (qP. and qNP/NPQ. respectively) were determined in each case. The results could be explained very interestingly, in relation with the proportion of exciting light reaching each photosystem (I. and II). The photochemical parameters obtained from variable chlorophyll fluorescence, allowed us to monitor non-destructively the physiological state of the black fruit during storage under both chilled or room-temperature conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PSI:

Photosystem I

PSII:

Photosystem II

F 0 :

Ground chlorophyll fluorescence triggered by the measuring light in the dark-adapted state

F’ 0 :

Ground chlorophyll fluorescence measured after application of 735 nm far-red light

F m :

Maximum chlorophyll fluorescence caused by application of a saturating light pulse on dark-adapted leaves

F m :

Maximum chlorophyll fluorescence caused by application of a saturating light pulse in the light-adapted state of the leaf

F′ v :

Variable fluorescence in the light-adapted state (F’m - F′0

F′v/F′0:

Maximum quantum yield of PS2 photochemistry (alternative expression more sensitive than

PSII:

Quantum efficiency of photosystem II

qP:

Photochemical quenching coefficient

NPQ and qNP:

Non-photochemical quenching coefficients

F′v/Fm:

Maximum quantum yield of photosynthesis of leaves adapted to light or antennae efficiency of PSII

References

  1. K. Maxwell and G. N. Johnson, Chlorophyll fluorescence-a practical guide, J. Exp. Bot., 2000, 51, 659–668.

    Article  CAS  PubMed  Google Scholar 

  2. N. R. Baker and K. Oxborough, in Chlorophyll a Fluorescence: A. Signature of Photosynthesis, ed. G. C. Papageorgiou and Govindjee, Springer, Dordrecht, 1st edn, 2004, vol. 1, ch. 3, pp. 68–74.

    Google Scholar 

  3. M. G. Lagorio, Chlorophyll fluorescence emission spectra in photosynthetic organisms, in Chlorophyll: Structure, Production and Medicinal Uses, ed. H. Le and E. Salcedo, Nova Publisher, Hauppauge, NY, 2011, ch. 4, p. 115.

    Google Scholar 

  4. J. R. DeEll and P. M. A. Toivonen, Use of chlorophyll fluorescence in postharvest quality assessments of fruits and vegetables, in Practical applications of Chlorophyll fluorescence in plant biology, ed. J. R. DeEl and P. M. A. Toivonen, Kluwer Academic Publishers, London, 2003, ch. 7, p. 203.

    Google Scholar 

  5. M. H. Kalaji, V. Goltsev, K. Bosa, S. I. Allakverdiev, R. J. Strasser and Govindjee, Experimental in vivo measurements of light emission in plants: a perspective dedicated to David Walker, Photosynth. Res., 2012, 114, 69–96.

    Article  CAS  PubMed  Google Scholar 

  6. H. M. Kalaji, G. Schansker and M. Brestic, Frequently asked questions about chlorophyll fluorescence, the sequel, Photosynth. Res., 2016, DOI: 10.1007/s11120-016-0318.

    Google Scholar 

  7. K. Kowalczyk, J. Gajc-Wolska, M. Marcinkowska, M. D. Cetner and H. M. Kalaji, Response of growth, quality parameters and photosynthetic apparatus of endive plant to different culture media, Folia Hort., 2016, 28, 25–30.

    Article  Google Scholar 

  8. V. Goltsev, M. H. Kalaji, M. Paunova, V. Babak, T. Horachekd, J. Moyskid, H. Kotsel and S. I. Allahverdieve, Using a variable chlorophyll fluorescence for evaluation of physiological state photosynthetic apparatus plants, Russ.J. Plant Physiol, 2016, 63, 1–28.

    Article  CAS  Google Scholar 

  9. M. H. Kalaji, G. Schansker, R. J. Ladle, et al., Frequently Asked Questions about in vivo chlorophyll fluorescence: practical issues, Photosynth. Res., 2014, 122, 121–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. M. E. Ramos and M. G. Lagorio, True Fluorescence Spectra of leaves, Photochem. Photobiol. Sci., 2004, 3, 1063–1066.

    Article  CAS  PubMed  Google Scholar 

  11. F. Franck, P. Juneau and R. Popovic, Resolution of the Photosystem I and Photosystem II. contributions to chlorophyll fluorescence of intact leaves at room temperature, Biochim. Biophys. Acta, 2002, 1556, 239–256.

    Article  CAS  PubMed  Google Scholar 

  12. P. Mazzinghi, G. Agati and F. Fusi, Interpretation and physiological significance of blue-green and red vegetation fluorescence, in Geoscience and Remote Sensing Symposium, 1994 (IGARSS) ’94, Surface and Atmospheric Remote Sensing: Technologies, Data Analysis and Interpretation, 1994, vol. 1, pp. 640–642.

    Google Scholar 

  13. C. Buschmann, Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves, Photosynth. Res., 2007, 92, 261–271.

    Article  CAS  PubMed  Google Scholar 

  14. R. Hak, H. K. Lichtenthaler and U. Rinderle, Decrease of the chlorophyll fluorescence ratio F690/F730 during greening and development of leaves, Radiat. Environ. Biophys., 1990, 29, 329–336.

    Article  CAS  PubMed  Google Scholar 

  15. N. D’Ambrosio, K. Szabo and H. K. Lichtenthaler, Increase of the chlorophyll fluorescence ratio F690/F735 during the autumnal chlorophyll breakdown, Radiat. Environ. Biophys, 1992, 31, 51–62.

    Article  PubMed  Google Scholar 

  16. R. Pedros, I. Moya, Y. Goulas and S. Jacquemoud, Chlorophyll fluorescence emission spectrum inside a leaf, Photochem. Photobiol. Sci., 2008, 7, 498–502.

    Article  CAS  PubMed  Google Scholar 

  17. G. Agati, Response of the in vivo chlorophyll fluorescence spectrum to environmental factors and laser excitation wavelength, Pure Appl. Opt., 1998, 7, 797–807.

    Article  CAS  Google Scholar 

  18. G. Agati, F. Fusi, P. Mazzinghi and M. Lipucci di Paola, A simple approach to the evaluation of the re-absorption of chlorophyll fluorescence spectra in intact leaves, J. Photochem. Photobiol, B, 1993, 17, 163–171.

    Article  CAS  Google Scholar 

  19. G. B. Cordon and M. G. Lagorio, Re-absorption of chlorophyll fluorescence in leaves revisited. A comparison of correction models, Photochem. Photobiol. Sci., 2006, 5, 735–740.

    Article  CAS  PubMed  Google Scholar 

  20. M. E. Ramos and M. G. Lagorio, A model considering light reabsorption processes to correct in vivo chlorophyll fluorescence spectra in apples, Photochem. Photobiol. Sci., 2006, 5, 508–512.

    Article  CAS  PubMed  Google Scholar 

  21. G. B. Cordon and M. G. Lagorio, Optical properties of the adaxial and abaxial faces of leaves. Chlorophyll fluorescence, absorption and scattering coefficients, Photochem. Photobiol. Sci., 2007, 6, 873–882.

    Article  CAS  PubMed  Google Scholar 

  22. J. Mendes Novo, A. Iriel and M. G. Lagorio, Modelling chlorophyll fluorescence of kiwi fruit (Actinidia deliciosa), Photochem. Photobiol. Sci., 2012, 11, 724–730.

    Article  CAS  PubMed  Google Scholar 

  23. A. Iriel, J. Mendes Novo, G. Cordon and M. G. Lagorio, Atrazine and Methyl viologen effects on Chlorophyll-a fluorescence revisited. Implications in Photosystems Emission and Ecotoxicity Assessment, Photochem. Photobiol, 2014, 90, 107–112.

    Article  CAS  PubMed  Google Scholar 

  24. A. Iriel, G. Dundas, A. Fernandez Cirelli and M. G. Lagorio, Effect of arsenic on reflectance spectra and chlorophyll fluorescence of aquatic plants, Chemosphere, 2015, 119, 697–703.

    Article  CAS  PubMed  Google Scholar 

  25. E. Pfiindel, Estimating the contribution of Photosystem I to total leaf chlorophyll fluorescence, Photosynth. Res., 1998, 56, 185–195.

    Article  Google Scholar 

  26. G. Agati, Response of the in vivo Chlorophyll fluorescence spectrum to environmental factors and laser excitation wavelength, Pure Appl. Opt., 1998, 7, 797.

    Article  CAS  Google Scholar 

  27. J. M. Anderson, P. Horton, E. Kim and W. S. Chow, Towards elucidation of dynamic structural changes of plant thylakoid architecture, Philos. Trans. R. Soc. London, Ser. B, 2012, 367, 3515–3524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. J. Minagawa, State transitions. The molecular remodeling of photosynthetic supercomplexes that controls energy flow inchloroplasts, Biochim. Biophys. Acta, 2011, 1807, 897–905.

    Article  CAS  PubMed  Google Scholar 

  29. H. K. Lichtenthaler, C. Buschmann and M. Knapp, How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM. fluorometer, Photosynthetica, 2005, 43, 379–393.

    Article  CAS  Google Scholar 

  30. M. Lechaudel, L. Urban and J. Joas, Chlorophyll fluorescence, a nondestructive method to assess maturity of mango fruits (Cv. ‘Cogshall’) without growth conditions bias, J. Agric. Food Chem., 2010, 58, 7532–7538.

    Article  CAS  PubMed  Google Scholar 

  31. Z. G. Cerovic, N. Moise, G. Agati, G. Latouche, N. Ben Ghozlen and S. Meyer, New portable optical sensors for the assessment of winegrape phenolic maturity based on berry fluorescence, J. Food Compos. Anal, 2008, 21, 650–654.

    Article  CAS  Google Scholar 

  32. P. Dabrowski, A. H. Baczewska, B. Pawluskiewicz, M. Paunovc, V. Alexantrov, V. Goltsev and M. H. Kalaji, Prompt chlorophyll a fluorescence as a rapid tool for diagnostic changes in PSII. structure inhibited by salt stress in Perennial ryegrass, J. Photochem. Photobiol, B, 2016, 157, 22–31.

    Article  CAS  Google Scholar 

  33. H. M. Kalaji, A. Jajoo, A. Oukarroum, M. Brestic, M. Zivcak, A. Samborska, M. D. Cetner, I. Lukasik, V. Goltsev and R. J. Ladle, Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions, Acta Physiol. Plant, 2016, 38, 102.

    Article  CAS  Google Scholar 

  34. M. G. Lagorio, L. E. Dicelio, M. I. Litter and E. San Roman, Modeling of Fluorescence Quantum Yields of Supported dyes. Aluminum carboxy-phthalocyanine on cellulose, J. Chem. Soc, Faraday Trans., 1998, 94(3), 419–425.

    Article  Google Scholar 

  35. H. B. Rodriguez, M. G. Lagorio and E. San Roman, Rose Bengal adsorbed on microgranular cellulose. Evidence of fluorescent dimers, Photochem. Photobiol. Sci., 2004, 3, 674–680.

    Article  CAS  PubMed  Google Scholar 

  36. A. Zeug, J. Zimmermann, M. G. Lagorio and E. San Roman, Microcrystalline cellulose as a carrier for hydrophobic photosensitizers in water, Photochem. Photobiol. Sci., 2002, 1, 198–203.

    Article  CAS  PubMed  Google Scholar 

  37. A. Iriel, M. G. Lagorio, L. E. Dicelio and E. San Roman, Photophysics of supported dyes: phthalocyanine on sila-nized silica, Phys. Chem. Chem. Phys., 2002, 4, 224–231.

    Article  CAS  Google Scholar 

  38. M. G. Lagorio, E. San Roman, A. Zeug, J. Zimmermann and B. Roeder, Photophysics on surfaces: Absorption and luminescence properties of pheophorbide-a on cellulose, Phys. Chem. Chem. Phys., 2001, 3, 1524–1529.

    Article  Google Scholar 

  39. H. W. Gausman and W. A. Allen, Optical Parameters of Leaves of 30 Plant species, Plant Physiol, 1973, 52, 57–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. J. Barder, The Photosystems: Structure, Function and Molecular Biology, Elsevier, New York, 1992.

    Google Scholar 

  41. O. Nanba and K. Satoh, Isolation of a photosystem II. reaction center consisting of D-1 and D-2 polypeptide and cytochrome, Proc. Natl. Acad. Sci. U. S. A., 1987, 84, 109–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. J. Deisenhofer and J. R. Norris, The Photosynthetic reaction center, Academic Press, London, 1993, vol. II.

  43. T. Y. Leong and J. M. Anderson, Adaptation of the thylakoid membranes of pea chloroplasts to light intensities. II. Regulation of electron transport capacities, electron carriers, coupling factor (CF1 activity and rates of photosynthesis, Photosynth. Res., 1984, 5, 117–128.

    Article  CAS  PubMed  Google Scholar 

  44. T. Y. Leong and J. M. Anderson, Light-quality and irradi-ance adaptation of the composition and function of peathylakoid membranes, Biochim. Biophys. Acta, 1986, 850, 57–63.

    Article  CAS  Google Scholar 

  45. M. S. Mc Donald, in Photobiology of Higher Plants, John Wiley and Sons Ltd, Chichester, England, 2003, ch. 4, pp. 121–122.

    Google Scholar 

  46. E. Brugnoli, A. Scartazza, M. C. De Tullio, M. C. Monteverdi, M. Lauteri and A. Augusti, Zeaxanthin and non-photohemical quenching in sun and shade leaves of C3 and C4 plants, Physiol. Plant., 1998, 104, 727–734.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gabriela Lagorio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calvo, B.O., Parapugna, T.L. & Lagorio, M.G. Variability in chlorophyll fluorescence spectra of eggplant fruit grown under different light environments: a case study. Photochem Photobiol Sci 16, 711–720 (2017). https://doi.org/10.1039/c6pp00475j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c6pp00475j

Navigation