Skip to main content
Log in

Optical properties of the adaxial and abaxial faces of leaves. Chlorophyll fluorescence, absorption and scattering coefficients

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Emission fluorescence spectra were obtained for the adaxial and abaxial faces of dicotyledonous (Ficus benjamina L.,Ficus elastica,Gardenia jasminoides and Hedera helix) and monocotyledonous leaves (Gladiolus spp. and Dracaena cincta bicolor). After correction by light-re-absorption processes, using a previously published physical model, the adaxial faces of dicotyledons showed a fluorescence ratio Fred/Ffar-red rather lower than the respective values for the abaxial faces. Monocotyledons and shade-adapted-plants showed similar values for the corrected fluorescence ratio for both faces. Even when differences in experimental fluorescence emission from adaxial and abaxial leaves in dicotyledons are mostly due to light re-absorption processes, the residual dissimilarity found after application of the correction model would point to the fact that fluorescence re-absorption is not the only responsible for the observed disparity. It was concluded that light re-absorption processes does not account entirely for the differences in the experimental emission spectra between adaxial and abaxial leaves. Differences that remains still present after correction might be interpreted in terms of a different photosystem ratio (PSII/PSI). Experiments at low temperature sustained this hypothesis. In dicotyledons, light reflectance for adaxial leaves was found to be lower than for the abaxial ones. It was mainly due to an increase in the scattering coefficient for the lower leaf-side. The absorption coefficient values were slightly higher for the upper leaf-side. During senescence of Ficus benjamina leaves, the scattering coefficient increased for both the upper and lower leaf-sides. With senescence time the absorption coefficient spectra broadened while the corrected fluorescence ratio (Fred/Ffar-red) decreased for both faces. The results pointed to a preferential destruction of photosystem II relative to photosystem I during senescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Papageorgiou and Govindjee, Chlorophyll a fluorescence - a signature of photosynthesis, Springer, Dordrecht, 2004.

    Book  Google Scholar 

  2. K. Maxwell and G. N. Johnson, Chlorophyll fluorescence - a practical guide, J. Exp. Bot., 2000, 51, 659–668.

    Article  CAS  PubMed  Google Scholar 

  3. N. Subhash, O. Wenzel and H. K. Lichtenthaler, Changes in blue-green and chlorophyll fluorescence emission and fluorescence ratios during senescence of tobacco plants, Remote Sens. Environ., 1999, 69, 215–223.

    Article  Google Scholar 

  4. H. K. Lichtenthaler and U. Rinderle, The role of chlorophyll fluorescence in the detection of stress conditions in plants, CRC Crit. Rev. Anal. Chem., 1988, 19(Suppl. I), 29–85.

    Article  Google Scholar 

  5. S. Singh, A. Dube and P. K. Gupta, Fluorescence study of maize irradiated by UVA, Pure Appl. Opt., 1998, 7, L39–L42.

    Article  Google Scholar 

  6. G. Agati, Z. G. Cerovic and I. Moya, The effect of decreasing temperature up to chilling values on the in vivo F685/F735 chlorophyll fluorescence ratio in Phaseolus vulgaris and Pisum sativum: The role of the photosystem I contribution to the 735 nm fluorescence band, Photochem. Photobiol., 2000, 72, 75–84.

    Article  CAS  PubMed  Google Scholar 

  7. G. Agati, Response of the in vivo chlorophyll fluorescence spectrum to environmental factors and laser excitation wavelengths, Pure Appl. Opt., 1998, 7, 797–807.

    Article  CAS  Google Scholar 

  8. R. B. Peterson, V. Oja and A. Laisk, Chlorophyll fluorescence at 680 and 730 nm and leaf photosynthesis, Photosynth. Res., 2001, 70, 185–196.

    Article  CAS  PubMed  Google Scholar 

  9. G. Agati, F. Fusi, P. Mazzinghi, M. Lipucci di Paola, A simple approach to the evaluation of the reabsorption of chlorophyll fluorescence spectra in intact leaves, J. Photochem. Photobiol., B, 1993, 17, 163–171.

    Article  CAS  Google Scholar 

  10. M. E. Ramos and M. G. Lagorio, True fluorescence spectra of leaves, Photochem. Photobiol. Sci., 2004, 3, 1063–1066.

    Article  CAS  PubMed  Google Scholar 

  11. G. B. Cordon and M. G. Lagorio, Re-absorption of chlorophyll fluorescence in leaves revisited. A comparison of correction models, Photochem. Photobiol. Sci., 2006, 5, 735–740.

    Article  CAS  PubMed  Google Scholar 

  12. A. A. Gitelson, C. Buschmann and H. K. Lichtenthaler, Leaf chlorophyll fluorescence corrected for re-absorption by means of absorption and reflectance measurements, J. Plant Physiol., 1998, 152, 283–296.

    Article  CAS  Google Scholar 

  13. M. E. Ramos and M. G. Lagorio, A model considering light reabsorption processes to correct in vivo chlorophyll fluorescence spectra in apples, Photochem. Photobiol. Sci., 2006, 5, 508–512.

    Article  CAS  PubMed  Google Scholar 

  14. M. Lang, F. Stober and H. K. Lichtenthaler, Fluorescence emission spectra of plant leaves and plant constituents, Radiat. Environ. Biophys., 1991, 30, 333–347.

    Article  CAS  PubMed  Google Scholar 

  15. J. Louis, Z. G. Cerovic and I. Moya, Quantitative study of fluorescence excitation and emission spectra of leaves, J. Photochem. Photobiol., B, 2006, 85, 65–71.

    Article  CAS  Google Scholar 

  16. H. W. Gausman and W. A. Allen, Optical parameters of leaves of 30 plant species, Plant Physiol., 1973, 52, 57–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. W. A. Allen and A. J. Richardson, Interaction of light with a plant canopy, J. Opt. Soc. Am., 1968, 58, 1023–1028.

    Article  Google Scholar 

  18. W. Wendlandt and H. G. Hecht, Reflectance Spectroscopy, Interscience, New York, 1966.

    Google Scholar 

  19. M. G. Lagorio, L. E. Dicelio, M. I. Litter, E. San Román, Modeling of fluorescence quantum yields of supported dyes. Aluminum carboxyphthalocyanine on cellulose, J. Chem. Soc., Faraday Trans., 1998, 94, 419–425.

    Article  Google Scholar 

  20. P. J. Zarco-Tejada, J. R. Miller, G. H. Mohammed and T. L. Noland, Chlorophyll fluorescence effects on vegetation apparent reflectance: I. Leaf-level, measurements and model simulation, Remote Sens. Environ., 2000, 74, 582–595.

    Article  Google Scholar 

  21. I. Terashima and Y. Inoue, Vertical gradient in photosynthetic properties of spinach chloroplasts dependent on intra-leaf light environment, Plant Cell Physiol., 1985, 26, 781–785.

    Article  CAS  Google Scholar 

  22. S. L. Ustin, S. Jaquemoud and Y. Govaerts, Simulation of photon transport in a three-dimensional leaf: implications for photosynthesis, Plant, Cell Environ., 2001, 24, 1095–1103.

    Article  Google Scholar 

  23. I. Terashima, S. Sakaguchi and N. Hara, Intra-leaf and intracellular gradients in chloroplast ultrastructure of dorsiventral leaves illuminated from the adaxial or abaxial side during their development, Plant Cell Physiol., 1986, 27, 1023–1031.

    Google Scholar 

  24. H. K. Lichtenthaler and S. Burkart, Photosynthesis and high light stress, Bulg. J. Plant Physiol., 1999, 25, 3–16.

    CAS  Google Scholar 

  25. Y. Manetas, Y. Petropoulou, G. K. Psaras and A. Erinia, Exposed red (anthocyanic) leaves of Quercus coccifera display shade characteristics, Funct. Plant Biol., 2003, 30, 265–270.

    Article  CAS  PubMed  Google Scholar 

  26. E. Pfundel, Estimating the contribution of photosystem I to total leaf chlorophyll fluorescence, Photosynth. Res., 1998, 56, 185–195.

    Article  CAS  Google Scholar 

  27. Govindjee, Sixty-three years since Kautsky: chlorophyll a fluorescence, Aust. J. Plant Physiol., 1995, 22, 131–160.

    CAS  Google Scholar 

  28. H. K. Lichtenthaler, Changes in the blue-green and chlorophyll fluorescence emission and fluorescence ratios during senescence of tobacco plants, Remote Sens. Environ., 1999, 69, 215–223.

    Article  Google Scholar 

  29. C. Buschman and H. K. Lichtenthaler, Principles and characteristics of multicolour fluorescence imaging of plants, J. Plant Physiol., 1998, 152, 297–314.

    Article  Google Scholar 

  30. S. S. Jogadhem, Prakash Masroo, A. Baig, Prasanna Mohanty, Differential changes in the steady state level of thylakoid membrane proteins during senescence in Cucumis sativus cotyledons, Z. Naturforsch., C, 2001, 56C, 582–592.

    Google Scholar 

  31. H. Bartoskova, J. Naus and M. T. I. Vykruta, The arrangement of chloroplasts in cells influences the reabsorption of chlorophyll fluorescence emission. The effect of desiccation on the chlorophyll fluorescence spectra of Rhizomnium punctatum leaves, Photosynth. Res., 1999, 62, 251–260.

    Article  CAS  Google Scholar 

  32. A. K. Knapp and G. A. Carter, Variability in leaf optical properties among 26 species from a broad range of habitats, Am. J. Bot., 1998, 85, 940–946.

    Article  CAS  PubMed  Google Scholar 

  33. J. T. Wooley, Reflectance and transmittance of light by leaves, Plant Physiol., 1971, 47, 656–662.

    Article  Google Scholar 

  34. I. Terashima and T. Saeki, Light Environment within a leaf I. Optical, properties of paradermal sections of Camellia leaves with special reference to differences in the optical properties of palisade and spongy tissues, Plant Cell Physiol., 1983, 24, 1493–1501.

    Article  CAS  Google Scholar 

  35. M. Boyer, J. Miller, M. Belanger, E. Hare and J. Wu, Senescence and spectral reflectance in leaves of northern pin oak (Quercus palustris Muenchh.), Remote Sens. Environ., 1988, 25, 71–87.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María G. Lagorio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cordón, G.B., Lagorio, M.G. Optical properties of the adaxial and abaxial faces of leaves. Chlorophyll fluorescence, absorption and scattering coefficients. Photochem Photobiol Sci 6, 873–882 (2007). https://doi.org/10.1039/b617685b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b617685b

Navigation