Skip to main content
Log in

Differential interactions of phytochrome A (Pr vs. Pfr) with monoclonal antibodies probed by a surface plasmon resonance technique

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Phytochromes are red- and far-red light-reversible photoreceptors for photomorphogenesis in plants. Phytochrome A is a dimeric chromopeptide that mediates very low fluence and high irradiance responses. To analyze the surface properties of phytochrome A (phyA), the epitopes of 21 anti-phyA monoclonal antibodies were determined by variously engineered recombinant phyA proteins and the dissociation constants of seven anti-phyA monoclonal antibodies with phyA were measured using a surface plasmon resonance (SPR)-based resonant mirror biosensor (IAsys). Purified oat phyA was immobilized on the sensor surface using a carboxymethyl dextran cuvette in advance, and the interactions of each chosen monoclonal antibody against phyA in either red light absorbing form (Pr) or far-red light absorbing form (Pfr) at different concentrations were monitored. The binding profiles were analyzed using the FAST Fit program of IAsys. The resultant values of dissociation constants clearly demonstrated the differential affinities between the phyA epitopes and the monoclonal antibodies dependent upon Pr vs. Pfr conformations. Monoclonal antibody mAP20 preferentially recognized the epitope at amino acids 653–731 in the Pr form, whereas mAA02, mAP21 and mAR07/mAR08 displayed preferential affinities for the Pfr’s surfaces at epitopes 494–601 (the hinge region between the N- and C-terminal domains), 601–653 (hinge in PASI domain), and 772–1128 (C-terminal domain), respectively. The N-terminal extension (1–74) was not recognized by mAP09 and mAP15, suggesting that the N-terminal extreme is not exposed in the native conformation of phyA. On the other hand, the C-terminal domain becomes apparently exposed on Pr-to-Pfr phototransformation, suggesting an inter-domain cross-talk. The use of surface plasmon resonance spectroscopy offers a new approach to study the surface properties of phytochromes associated with the photoreversible structural changes, as well as for the study of protein—protein interactions of phytochromes with their interacting proteins involved in light signaling events in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Chen, J. Chory, C. Fankhauser, Light signal transduction in higher plants, Annu. Rev. Genet., 2004, 38, 87–117.

    Article  CAS  Google Scholar 

  2. H. Smith, Phytochromes and light signal perception by plants - an emerging synthesis, Nature, 2000, 407, 585–591.

    Article  CAS  Google Scholar 

  3. C. Fankhauser, The phytochromes, a family of red/far-red absorbing photoreceptors, J. Biol. Chem., 2001, 276, 11453–11456.

    Article  CAS  Google Scholar 

  4. C. Lin, D. Shalitin, Cryptochrome structure and signal transduction, Annu. Rev. Plant Biol., 2003, 54, 469–496.

    Article  CAS  Google Scholar 

  5. W. R. Briggs, J. M. Christie, Phototropins 1 and 2: versatile plant blue-light receptors, Trends Plant Sci., 2002, 7, 204–210.

    Article  CAS  Google Scholar 

  6. N. C. Rockwell, Y. S. Su, J. C. Lagarias, Phytochrome structure and signaling mechanisms, Annu. Rev. Plant Biol., 2006, 57, 837–858.

    Article  CAS  Google Scholar 

  7. P. H. Quail, Phytochrome photosensory signaling networks, Nat. Rev. Mol. Cell Biol., 2002, 3, 85–93.

    Article  CAS  Google Scholar 

  8. C. M. Park, S. H. Bhoo, P.-S. Song, Inter-domain crosstalk in the phytochrome molecules, Semin. Cell Dev. Biol., 2000, 11, 449–456.

    Article  CAS  Google Scholar 

  9. H. Wang, X.-W. Deng, Dissecting the phytochrome A-dependent signaling network in higher plants, Trends Plant Sci., 2003, 8, 172–178.

    Article  CAS  Google Scholar 

  10. M. Ni, J. M. Tepperman, P. H. Quail, PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein, Cell, 1998, 95, 657–667.

    Article  CAS  Google Scholar 

  11. Y. Zhu, J. M. Tepperman, C. D. Fairchild, P. H. Quail, Phytochrome B binds with greater apparent affinity than phytochrome A to the basic helix-loop-helix factor PIF3 in a reaction requiring the PAS domain of PIF3, Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 13419–13424.

    Article  CAS  Google Scholar 

  12. J. Kim, H. Yi, G. Choi, B. Shin, P.-S. Song, G. Choi, Functional characterization of phytochrome interacting factor 3 in phytochrome-mediated light signal transduction, Plant Cell, 2003, 15, 2399–2407.

    Article  CAS  Google Scholar 

  13. G. Choi, H. Yi, Y.-K. Kwon, M.-S. Soh, B. Shin, Z. Luka, T.-R. Hahn, P.-S. Song, Phytochrome signaling is mediated through nucleoside diphosphate kinase 2, Nature, 1999, 401, 610–613.

    Article  CAS  Google Scholar 

  14. Y. Shen, J.-I. Kim, P.-S. Song, NDPK2 as a signal transducer in the phytochrome-mediated light signaling, J. Biol. Chem., 2005, 280, 5740–5749.

    Article  CAS  Google Scholar 

  15. C. Fankhauser, K. C. Yeh, J. C. Lagarias, H. Zhang, T. D. Elich, J. Chory, PKS1, a substrate phosphorylated by phytochrome that modulates light signaling in Arabidopsis, Science, 1999, 284, 1539–1541.

    Article  CAS  Google Scholar 

  16. J. S. Ryu, J.-I. Kim, T. Kunkel, B. C. Kim, D. S. Cho, S. H. Hong, S.-H. Kim, A. P. Fernndez, Y. Kim, J. M. Alonso, J. R. Ecker, F. Nagy, P. O. Lim, P.-S. Song, E. Schäfer, H. G. Nam, Phytochrome-specific type 5 phosphatase controls light signal flux by enhancing phytochrome stability and affinity for a signal transducer, Cell, 2005, 120, 395–406.

    Article  CAS  Google Scholar 

  17. E. Schäfer, C. Bowler, Phytochrome-mediated photoperception and signal transduction in higher plants, EMBO Rep., 2002, 3, 1042–1048.

    Article  Google Scholar 

  18. J. M. McDonnell, Surface plasmon resonance: towards an understanding of the mechanisms of biological molecular recognition, Curr. Opin. Chem. Biol., 2001, 5, 572–577.

    Article  CAS  Google Scholar 

  19. W. M. Mullet, E. P. C. Lai, J. M. Yeung, Surface plasmon resonance-based immunoassays, Methods, 2000, 22, 77–91.

    Article  Google Scholar 

  20. P. R. Edwards, C. H. Maule, R. J. Leatherbarrow, D. J. Winzor, Second-order kinetic analysis of IAsys biosensor data: its use and applicability, Anal. Biochem., 1998, 263, 1–12.

    Article  CAS  Google Scholar 

  21. K. Tomizawa, N. Ito, Y. Komeda, T. Q. P. Uyeda, K. Takio, M. Furuya, Characterization and intracellular distribution of pea phytochrome I polypeptides expressed in E. coli, Plant Cell Physiol., 1999, 32, 95–102.

    Google Scholar 

  22. H. Abe, H. Handa, Y. Hogi, T. Fukazawa, Efficient usage of a galactose-inducible expression vector for the production of heterologous protein in yeast, Agric. Biol. Chem., 1991, 52, 2035–2041.

    Google Scholar 

  23. L. Deforce, K. Tomizawa, N. Ito, D. Farrens, P.-S. Song, M. Furuya, In vitro assembly of apophytochrome and apophytochrome deletion mutants expressed in yeast with phycocyanobilin, Proc. Natl. Acad. Sci. U. S. A., 1991, 88, 10392–10396.

    Article  CAS  Google Scholar 

  24. J.-I. Kim, Y. Shen, Y.-J. Han, D. Kirchenbauer, J.-E. Park, M.-S. Soh, F. Nagy, E. Schäfer, P.-S. Song, Phytochrome phosphorylation modulates light signaling by influencing the protein–protein interaction, Plant Cell, 2004, 16, 2629–2640.

    Article  CAS  Google Scholar 

  25. V. N. Lapko, P.-S. Song, A simple and improved method of isolation and purification for native oat phytochrome, Photochem. Photobiol., 1995, 62, 194–198.

    Article  CAS  Google Scholar 

  26. A. Nagatani, K. T. Yamamoto, M. Furuya, T. Fukumoto, A. Yamashita, Production and characterization of monoclonal antibodies which distinguish different surface structures of pea (Pisum sativum cv. Alaska) phytochrome, Plant Cell Physiol., 1984, 25, 1059–1068.

    CAS  Google Scholar 

  27. A. Nagatani, P. J. Lumsden, A. Konomi and H. Abe, Application of monoclonal antibodies to phytochrome studies, in Phytochrome and photoregulation in plants, ed. M. Furuya, Academic Press, 1987, pp. 95–114.

    Google Scholar 

  28. P. J. Lumsden, K. T. Yamamoto, A. Nagatani, M. Furuya, Effect of monoclonal antibodies on the in vitro Pfr dark reversion of pea phytochrome, Plant Cell Physiol., 1985, 26, 1313–1322.

    CAS  Google Scholar 

  29. T. Shinomura, A. Nagatani, H. Hanzawa, M. Kubota, M. Watanabe, M. Furuya, Action spectra for phytochrome A- and B-specific photoinduction of seed germination in Arabidopsis thaliana., Proc. Natl. Acad. Sci. U. S. A., 1996, 93, 8129–8133.

    Article  CAS  Google Scholar 

  30. J.-I. Kim, J.-E. Park, X. Zarate, P.-S. Song, Phytochrome phosphorylation in plant light signaling, Photochem. Photobiol. Sci., 2005, 4, 681–687.

    Article  CAS  Google Scholar 

  31. W. Parker, P.-S. Song, Location of helical regions in tetrapyrrole containing proteins by a helical hydrophobic moment analysis. Application to phytochrome, J. Biol. Chem., 1990, 265, 17568–17575.

    Article  CAS  Google Scholar 

  32. J. J. Casal, S. J. Davis, D. Kirchenbauer, A. Viczian, M. J. Yanovsky, R. C. Clough, S. Kircher, E. T. Jordan-Beebe, E. Schäfer, F. Nagy, R. D. Vierstra, The serine-rich N-terminal domain of oat phytochrome A helps regulate light responses and subnuclear localization of the photoreceptor, Plant Physiol., 2002, 129, 1127–1137.

    Article  CAS  Google Scholar 

  33. B. L. Montgomery, J. C. Lagarias, Phytochrome ancestry: Sensors of bilins and light, Trends Plant Sci., 2002, 7, 357–366.

    Article  CAS  Google Scholar 

  34. J.-I. Kim and P.-S. Song, A Structure-function model based on inter-domain crosstalks in phytochromes, in Light Sensing in Plants, ed. M. Wada, K. Shimazaki and M. Iino, Springer-Verlag, Tokyo, 2005, pp. 53–63.

    Google Scholar 

  35. J.-I. Kim, S. H. Bhoo, Y.-J. Han, X. Zarate, P.-S. Song, The PAS-2 domain is required for dimerization of phytochrome A, J. Photochem. Photobiol., A, 2006, 178, 115–121.

    Article  CAS  Google Scholar 

  36. J. R. Wagner, J. S. Brunzelle, K. T. Forest, R. D. Vierstra, A light sensing knot revealed by the structure of the chromophore binding domain of phytochrome, Nature, 2005, 438, 325–331.

    Article  CAS  Google Scholar 

  37. P. Lindemann, S. E. Braslavsky, M. M. Cordonnier, L. H. Pratt, K. Schaffner, Photochem. Photobiol., 1993, 58, 417–424.

    Article  CAS  Google Scholar 

  38. T. A. Wells, M. Nakazawa, K. Manabe, P.-S. Song, A conformational change associated with the phototransformation of Pisum phytochrome A as probed by fluorescent quenching, Biochemistry, 1994, 33, 708–712.

    Article  CAS  Google Scholar 

  39. V. N. Lapko, X. Y. Jiang, D. L. Smith, P.-S. Song, Surface topography of phytochrome A deduced from specific chemical modification with iodoacetamide, Biochemistry, 1998, 37, 12526–12535.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Furuya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Natori, C., Kim, JI., Bhoo, S.H. et al. Differential interactions of phytochrome A (Pr vs. Pfr) with monoclonal antibodies probed by a surface plasmon resonance technique. Photochem Photobiol Sci 6, 83–89 (2007). https://doi.org/10.1039/b611077k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b611077k

Navigation