Skip to main content
Log in

Phytochrome phosphorylation in plant light signaling

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Reversible protein phosphorylation is a switching mechanism used in eukaryotes to regulate various cellular signalings. In plant light signaling, sophisticated photosensory receptor systems operate to modulate growth and development. The photoreceptors include phytochromes, cryptochromes and phototropins. Despite considerable progresses in defining the photosensory roles of these photoreceptors, the primary biochemical mechanisms by which the photoreceptor molecules transduce the perceived light signals into cellular responses remain to be elucidated. The signal-transducing photoreceptors in plants are all phosphoproteins and/or protein kinases, suggesting that light-dependent protein phosphorylation and dephosphorylation play important roles in the function of the photoreceptors. This review focuses on the role of phytochromes’ reversible phosphorylation involved in the light signal transduction in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Watson, Light and protein kinases, Adv. Bot. Res., 2000, 32, 149–184.

    Article  CAS  Google Scholar 

  2. S. Luan, Protein phosphatases in plants, Annu. Rev. Plant Biol., 2003, 54, 63–92.

    Article  CAS  PubMed  Google Scholar 

  3. D. Kerk, J. Bulgrien, D. W. Smith, B. Barsam, S. Veretnik and M. Gribskov, The complement of protein phosphatase catalytic subunits encoded in the genome of Arabidopsis, Plant Physiol., 2002, 129, 908–925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. J. H. Tchieu, F. Fana, J. L. Fink, J. Harper, T. M. Nair, R. H. Niedner, D. W. Smith, K. Steube, T. M. Tam, S. Veretnik, D. Wang and M. Gribskov, The PlantsP and PlantsT Functional Genomics Databases, Nucleic Acids Res., 2003, 31, 342–344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. L. N. Johnson, M. O’Reilly, Control by phosphorylation, Curr. Opin. Struct. Biol., 1996, 6, 762–769.

    Article  CAS  PubMed  Google Scholar 

  6. S. Kawakami, H. S. Padgett, D. Hosokawa, Y. Okada, R. N. Beachy and Y. Watanabe, Phosphorylation and/or presence of serine 37 in the movement protein of tomato mosaic tobamovirus is essential for intracellular localization and stability in vivo, J. Virol., 1999, 73, 6831–6840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. T. Pawson, Protein modules and signaling networks, Nature, 1995, 373, 573–580.

    Article  CAS  PubMed  Google Scholar 

  8. G.-Q. Tang, S. C. Hardin, R. Dewey and S. C. Huber, A novel C-terminal proteolytic processing of cytosolic pyruvate kinase, its phosphorylation and degradation by the proteasome in developing soybean seeds, Plant J., 2003, 34, 77–93.

    Article  CAS  PubMed  Google Scholar 

  9. S. C. Huber and S. C. Hardin, Numerous post-translational modifications provide opportunities for the intricate regulation of metabolic enzymes at multiple levels, Curr. Opin. Plant Biol., 2004, 7, 318–322.

    Article  CAS  PubMed  Google Scholar 

  10. C. S. Hardtke, K. Gohda, M. T. Osterlund, T. Oyama, K. Okada K, X.-W. Deng, HY5 stability and activity in arabidopsis is regulated by phosphorylation in its COP1 binding domain, EMBO J., 2000, 19, 4997–5006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. M. M. Neff, C. Fankhauser and J. Chory, Light: an indicator of time and place, Genes Dev., 2000, 14, 257–271.

    CAS  PubMed  Google Scholar 

  12. M. Chen, J. Chory and C. Fankhauser, Light signal transduction in higher plants, Annu. Rev. Genet., 2004, 38, 87–117.

    Article  CAS  PubMed  Google Scholar 

  13. J. A. Sullivan, X.-W. Deng, From seed to seed: the role of photoreceptors in Arabidopsis development, Dev. Biol., 2003, 260, 289–297.

    Article  CAS  PubMed  Google Scholar 

  14. P. H. Quail, M. T. Boylan, B. M. Parks, T. W. Short, Y. Xu and D. Wagner, Phytochromes: Photosensory perception and signal transduction, Science, 1995, 268, 675–680.

    Article  CAS  PubMed  Google Scholar 

  15. J. Chory, M. Chatterjee, R. K. Cook, T. Elich, C. Fankhauser, J. Li, P. Nagpal, M. Neff, A. Pepper, D. Poole, J. Reed and V. Vitart, From seed germination to flowering, light controls plant development via pigment phytochrome, Proc. Natl. Acad. Sci. USA, 1996, 93, 12066–12071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. H. Smith, Phytochromes and light signal perception by plants-an emerging synthesis, Nature, 2000, 407, 585–591.

    Article  CAS  PubMed  Google Scholar 

  17. P. H. Quail, Phytochrome photosensory signaling networks, Nat. Rev. Mol. Cell. Biol., 2002, 3, 85–93.

    Article  CAS  PubMed  Google Scholar 

  18. C. Fankhauser, The phytochromes, a family of red/far-red absorbing photoreceptors, J. Biol. Chem., 2001, 276, 11453–11456.

    Article  CAS  PubMed  Google Scholar 

  19. A. R. Cashmore, J. A. Jarillo JA, Y. J. Wu and D. Liu, Cryptochromes: blue light receptors for plants and animals, Science, 1999, 284, 760–765.

    Article  CAS  PubMed  Google Scholar 

  20. C. Lin and D. Shalitin, Cryptochrome structure and signal transduction, Annu. Rev. Plant Biol., 2003, 54, 469–496.

    Article  CAS  PubMed  Google Scholar 

  21. E. Huala, P. W. Oeller, E. Liscum, I.-S. Han, E. Larsen and W. R. Briggs, Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain, Science, 1997, 278, 2120–2123.

    Article  CAS  PubMed  Google Scholar 

  22. W. R. Briggs and J. M. Christie, Phototropins 1 and 2: versatile plant blue-light receptors, Trends Plant Sci., 2002, 7, 204–210.

    Article  CAS  PubMed  Google Scholar 

  23. N. Datta, Y. R. Chen and S. J. Roux, Phytochrome and calcium stimulation of protein phosphorylation in isolated pea nuclei, Biochim. Biophys. Res. Commun., 1985, 162, 1403–1408.

    Article  Google Scholar 

  24. K. Harter, H. Frohnmeyer, S. Kircher, T. Kunkel, S Muhlbauer, E. Schäfer, Light induces rapid changes of the phosphorylation pattern in cytosol of evacuolated parsley protoplasts, Proc. Natl. Acad. Sci. USA, 1994, 91, 5038–5042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. J. Sheen, Protein phosphatase activity is required for light-inducible gene expression in maize, EMBO J., 1993, 12, 3497–3505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. M. R. Chandok and S. K. Sopory, Phosphorylation/dephosphorylation steps are key events in the phytochrome-mediated enhancement of nitrate reductase mRNA levels and enzyme activity in maize, Mol. Gen. Genet., 1996, 251, 599–608.

    Article  CAS  PubMed  Google Scholar 

  27. P. Malec, A. Yahalom and D. A. Chamovitz, Identification of a light-regulated protein kinase activity from seedlings of Arabidopsis thaliana, Photochem. Photobiol., 2002, 75, 178–183.

    Article  CAS  PubMed  Google Scholar 

  28. P. H. Quail, W. R. Briggs and L. H. Pratt, In vivo phosphorylation of phytochrome, Carnegie Institution Yearbook, 1978, 77, 342–344.

    Google Scholar 

  29. M. Ahmad, J. A. Jarillo, O. Smirnova and A. R. Cashmore, The CRY1 blue light photoreceptor of Arabidopsis interacts with phytochrome A in vitro, Mol. Cell, 1998, 1, 939–948.

    Article  CAS  PubMed  Google Scholar 

  30. D. Shalitin, H. Yang, T. C. Mockler, M. Maymon, H. Guo, G. C. Whitelam and C. Lin, Regulation of Arabidopsis cryptochrome 2 by blue-light-dependent phosphorylation, Nature, 2002, 417, 763–767.

    Article  CAS  PubMed  Google Scholar 

  31. K.-C. Yeh and J. C. Lagarias, Eukaryotic phytochromes: Light-regulated serine/threonine protein kinases with histidine kinase ancestry, Proc. Natl. Acad. Sci. USA, 1998, 95, 13976–13981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. J. M. Christie, P. Reymond, G. K. Powell, P. Bernasconi, A. A. Raibekas, E. Liscum and W. R. Briggs, Arabidopsis NPH1: a flavoprotein with the properties of a photoreceptor for phototropism, Science, 1998, 282, 1698–701.

    Article  CAS  PubMed  Google Scholar 

  33. J. P. Bouly, B. Giovani, A. Djamei, M. Mueller, A. Zeugner, E. A. Dudkin, A. Batschauer and M. Ahmad, Novel ATP-binding and autophosphorylation activity associated with Arabidopsis and human cryptochrome-1, Eur. J. Biochem., 2003, 270, 2921–2928.

    Article  CAS  PubMed  Google Scholar 

  34. D. Shalitin, X. Yu, M. Maymon, T. Mockler and C. Lin, Blue light-dependent in vivo and in vitro phosphorylation of Arabidopsis cryptochrome 1, Plant Cell, 2003, 15, 2421–2429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. C.-M. Park, S.-H. Bhoo, P.-S. Song, Inter-domain crosstalk in the phytochrome molecules, Sem. Cell Dev. Biol., 2000, 11, 449–456.

    Article  CAS  Google Scholar 

  36. J.-I. Kim, G. V. Kozhukh, P.-S. Song, Phytochrome-mediated signal transduction pathways in plants, Biochem. Biophys. Res. Commun., 2002, 298, 457–463.

    Article  CAS  PubMed  Google Scholar 

  37. H. Wang, X.-W. Deng, Dissecting the phytochrome A-dependent signaling network in higher plants, Trends Plant Sci., 2003, 8, 172–178.

    Article  CAS  PubMed  Google Scholar 

  38. E. Schäfer and C. Bowler, Phytochrome-mediated photoperception and signal transduction in higher plants, EMBO Rep., 2002, 3, 1042–1048.

    Article  PubMed  PubMed Central  Google Scholar 

  39. U. Sweere, K. Eichenberg, J. Lohrmann, V. Mira-Rodado, I. Baurle, J. Kudla, F. Nagy, E. Schäfer and K. Harter, Interaction of the response regulator ARR4 with phytochrome B in modulating red light signaling, Science, 2001, 294, 1108–1111.

    Article  CAS  PubMed  Google Scholar 

  40. Y. Zhu, J. M. Tepperman, C. D. Fairchild and P. H. Quail, Phytochrome B binds with greater apparent affinity than phytochrome A to the basic helix-loop-helix factor PIF3 in a reaction requiring the PAS domain of PIF3, Proc. Natl. Acad. Sci. USA, 2000, 97, 13419–13424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. B. L. Montgomery and J. C. Lagarias, Phytochrome ancestry: sensors of bilins and light, Trends Plant Sci., 2002, 7, 357–366.

    Article  CAS  PubMed  Google Scholar 

  42. J. R. Cherry, D. Hondred, J. M. Walker and R. D. Viestra, Phytochrome requires the 6-kDa N-terminal domain for full biological activity, Proc. Natl. Acad. Sci. USA, 1992, 89, 5039–5043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. E. T. Jordan, J. M. Marita, R. C. Clough and R. D. Viestra, Characterization of regions within the N-terminal 6-kilodalton domain of phytochrome A that modulate its biological activity, Plant Physiol., 1997, 115, 693–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. J. J. Casal, S. J. Davis, D Kirchenbauer, A. Viczian, M. J. Yanovsky, R. C. Clough, S. Kircher, E. T. Jordan-Beebe, E. Schäfer, F. Nagy and R. D. Vierstra, The serine-rich N-terminal domain of oat phytochrome A helps regulate light responses and subnuclear localization of the photoreceptor, Plant Physiol., 2002, 129, 1127–1137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. D. Wagner, C. D. Fairchild, R. M. Kuhn and P. H. Quail, Chromophore-bearing NH2-terminal domains of phytochromes A and B determine their photosensory specificity and differential light lability, Proc. Natl. Acad. Sci. USA, 1996, 93, 4011–4015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Y. Oka, T. Matsushita, N. Mochizuki, T. Suzuki, S. Tokutomi and A. Nagatani, Functional analysis of a 450-amino acid N-terminal fragment of phytochrome B in Arabidopsis, Plant Cell, 2004, 16, 2104–2116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. L. Krall and J. W. Reed, The histidine kinase-related domain participates in phytochrome B function but is dispensable, Proc. Natl. Acad. Sci. USA, 2000, 97, 8169–8174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. P. H. Quail, The phytochromes: a biochemical mechanism of signaling in sight?, BioEssays, 1997, 19, 571–579.

    Article  CAS  PubMed  Google Scholar 

  49. J.-I. Kim and P.-S. Song, unpublished.

  50. C. Fankhauser, K. C. Yeh, J.-C. Lagarias, H. Zhang, T. D. Elich and J. Chory, PKS1, a substrate phosphorylated by phytochrome that modulates light signaling in Arabidopsis, Science, 1999, 284, 1539–1541.

    Article  CAS  PubMed  Google Scholar 

  51. T. Matsushita, N. Mochizuki and A. Nagatani, Dimers of the N-terminal domain of phytochrome B are functional in the nucleus, Nature, 2003, 424, 571–574.

    Article  CAS  PubMed  Google Scholar 

  52. Y.-S. Wong, H.-C. Cheng, D. A. Walsh and J. C. Clark, Phosphorylation of Avena phytochrome in vitro as a probe of light-induced conformational changes, J. Biol. Chem., 1986, 261, 12089–12097.

    Article  CAS  PubMed  Google Scholar 

  53. B. J. Biermann, L. I. Pao and L. J. Feldman, Pr specific phytochrome phosphorylation in vitro by a protein kinase present in anti-phytochrome maize immunoprecipitates, Plant Physiol., 1994, 105, 243–251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. R. W. McMichael, Jr. and J. C. Lagarias, Phosphopeptide mapping of Avena phytochrome phosphorylated by protein kinase in vitro, Biochemistry, 1990, 29, 3872–3878.

    Article  CAS  PubMed  Google Scholar 

  55. V. N. Lapko, X. Y. Jiang, D. L. Smith, P.-S. Song, Post-translational modification of oat phytochrome A: Phosphorylation of a specific serine in a multiple serine cluster, Biochemistry, 1997, 36, 10595–10599.

    Article  CAS  PubMed  Google Scholar 

  56. V. N. Lapko, X. Y. Jiang, D. L. Smith, P.-S. Song, Mass spectrometric characterization of oat phytochrome A: Isoforms and posttranslational modifications, Protein Sci., 1999, 8, 1032–1044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. V. N. Lapko, T. A. Wells, P.-S. Song, Protein kinase A-catalyzed phosphorylation and conformational changes in phytochrome A, Biochemistry, 1996, 35, 6585–6594.

    Article  CAS  PubMed  Google Scholar 

  58. C. Fankhauser, Phytochromes as light-modulated protein kinases, Semin. Cell Dev. Biol., 2000, 11, 467–473.

    Article  CAS  PubMed  Google Scholar 

  59. J. Stockhaus, A. Nagatani, U. Halfter, S. Kay, M. Furuya, N.-H. Chua, Serine-to-alanine substitutions at the amino-terminal region of phytochrome A result in an increase in biological activity, Genes Dev., 1992, 6, 2364–2372.

    Article  CAS  PubMed  Google Scholar 

  60. J.-I. Kim, Y. Shen, Y.-J. Han, D. Kirchenbauer, J.-E. Park, M.-S. Soh, F. Nagy, E. Schäfer, P.-S Song, Phytochrome phosphorylation modulates light signaling by influencing the protein–protein interaction, Plant Cell, 2004, 16, 2629–2640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. G. Choi, H. Yi, Y.-K. Kwon, M.-S. Soh, B. Shin, Z. Luka, T.-R. Hahn, P.-S. Song, Phytochrome signaling is mediated through nucleoside diphosphate kinase 2, Nature, 1999, 401, 610–613.

    Article  CAS  PubMed  Google Scholar 

  62. Y.-J. Im, J.-I. Kim, Y. Shen, Y. Na, Y.-J. Han, S.-H. Kim, P.-S. Song and S. H. Eom, Structural analysis of Arabidopsis thaliana nucleoside diphosphate kinase-2 for plant phytochrome signaling, J. Mol. Biol., 2004, 343, 659–670.

    Article  CAS  PubMed  Google Scholar 

  63. M. Ni, J. M. Tepperman and P. H. Quail, PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein, Cell, 1998, 95, 657–667.

    Article  CAS  PubMed  Google Scholar 

  64. E. Monte, J. M. Tepperman, B. Al-Sady, K. A. Kaczorowski, J. M. Alonso, J. R. Ecker, X. Li, Y. Zhang and P. H. Quail, The phytochrome-interacting transcription factor, PIF3, acts early, selectively, and positively in light-induced chloroplast development, Proc. Natl. Acad. Sci. USA., 2004, 101, 16091–16098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Y.-S. Wong, R. W. McMichael, Jr. and J. C. Clark, Properties of a polycation-stimulated protein kinase associated with purified Avena phytochrome, Plant Physiol., 1989, 91, 709–718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. H. A. W. Schneider-Poetsch, B. Braun, S. Marx and A. Schaumburg, Phytochromes and bacterial sensor proteins are related by structural and functional homologs/hypothesis on phytochrome-mediated signal transduction, FEBS Lett., 1991, 281, 245–259.

    Article  CAS  PubMed  Google Scholar 

  67. F. Thümmler, P. Algarra and G. M. Fobo, Sequence similarities of phytochrome to protein kinases: implication for the structure, function and evolution of the phytochrome gene family, FEBS Lett., 1995, 357, 149–155.

    Article  PubMed  Google Scholar 

  68. M. T. Boylan and P. H. Quail, Are the phytochromes protein kinases?, Protoplasma, 1996, 195, 12–17.

    Article  CAS  Google Scholar 

  69. J. Hughes, T. Lamparter, F. Mittman, E. Hartmann, W. Gartner, A. Wilde and T. Boerner, A prokaryotic phytochrome, Nature, 1997, 386, 663.

    Article  CAS  PubMed  Google Scholar 

  70. K.-C. Yeh, S.-H. Wu, J. T. Murphy and J. C. Lagarias, A cyanobacterial phytochrome two-component light sensory system, Science, 1997, 277, 1505–1508.

    Article  CAS  PubMed  Google Scholar 

  71. A. Colón-Carmona, D. L. Chen, K.-C. Yeh and S. Abel, Aux/IAA proteins are phosphorylated by phytochrome in vitro, Plant Physiol, 2000, 124, 1728–1738.

    Article  PubMed  PubMed Central  Google Scholar 

  72. S.-H. Bhoo, S. J. Davis, J. Walker, B. Karniol and R. D. Vierstra, Bacteriophytochromes are photochromic histidine kinases using a biliverdin chromophore, Nature, 2001, 414, 776–779.

    Article  CAS  PubMed  Google Scholar 

  73. V. N. Lapko and P.-S. Song, unpublished.

  74. I.-S. Kim and J.-I. Kim, unpublished.

  75. F. Thümmler, R. Herbst, P. Algarra and A. Ullrich, Analysis of the protein kinase activity of moss phytochrome expressed in fibroblast cell culture, Planta, 1995, 197, 592–596.

    Article  PubMed  Google Scholar 

  76. D.-H. Kim, J.-G. Kang, S.-S. Yang, K.-S. Chung, P.-S. Song, C.-M. Park, A phytochrome associated protein phosphatase 2A modulates light signals in flowering time control in Arabidopsis, Plant Cell, 2002, 14, 3043–3056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. J. S. Ryu, J.-I. Kim, T. Kunkel, B. C. Kim, D. S. Cho, S. H. Hong, S.-H. Kim, A. P. Fernández, Y. Kim, J. M. Alonso, J. R. Ecker, F. Nagy, P. O. Lim, P.-S. Song, E. Schäfer and H. G. Nam, Phytochrome-specific type 5 phosphatase controls light signal flux by enhancing phytochrome stability and affinity for a signal trasducer, Cell, 2005, 120, 395–406.

    Article  CAS  PubMed  Google Scholar 

  78. S. G. Møller, Y.-S. Kim, T. Kunkel, N.-H. Chua, PP7 is a positive regulator of blue light signaling in Arabidopsis, Plant Cell, 2003, 15, 1111–1119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. I. Sokal, A. Pulvermuller, J. Buczylko, K. P. Hofmann and K. Palczawski, Rhodopsin and its kinase, Methods Enzymol., 2002, 343, 578–600.

    Article  PubMed  PubMed Central  Google Scholar 

  80. J.-I. Kim and P.-S. Song, unpublished.

  81. V. Y. Arshavsky, Rhodopsin phosphorylation: from terminating single photon responses to photoreceptor dark adaptation, Trends Neurosci., 2002, 25, 124–126.

    Article  CAS  PubMed  Google Scholar 

  82. J. M. Maloof, J. O. Borevitz, T. Dabi, J. Lutes, R. B. Nehring, J. L. Redfern, G. T. Trainer, J. M. Wilson, T. Asami, C. C. Berry, D. Weigel and J. Chory, Natural variation in light sensitivity of Arabidopsis, Nature Genetics, 2001, 29, 441–446.

    Article  CAS  PubMed  Google Scholar 

  83. P. Lariguet, H. E. Boccalandro, J. M. Alonso, J. R. Ecker, J. Chory, J. J. Casal and C. Fankhauser, A growth regulatory loop that provides homeostasis to phytochrome a signaling, Plant Cell, 2003, 15, 2966–2978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. H. Hellmann and M. Estelle, Plant development: Regulation by protein degradation, Science, 2002, 297, 793–797.

    Article  CAS  PubMed  Google Scholar 

  85. J.-G. Kang, J. Yun, D.-H. Kim, K.-S. Chung, S. Fujioka, J.-I. Kim, H.-W. Dae, S. Yoshida, S. Takatsuti, P.-S. Song, C.-M. Park, Light and brassinosteroid signals are integrated via a dark-induced small G protein in etiolated seedling growth, Cell, 2001, 105, 625–636.

    Article  CAS  PubMed  Google Scholar 

  86. F. Nagy, E. Schäfer, Phytochrome control photomorphogenesis by differentially regulated, interacting signaling pathways in higher plants, Annu. Rev. Plant Biol., 2002, 53, 329–355.

    Article  CAS  PubMed  Google Scholar 

  87. S. Kircher, P. Gil, L. Kozma-Bognar, E. Fejes, V. Speth, T. Husselstein-Muller, D. Bauer, E. Adam, E. Schafer and F. Nagy, Nucleocytoplasmic partitioning of the plant photoreceptors phytochrome A, B, C, D, and E is regulated differentially by light and exhibits a diurnal rhythm, Plant Cell, 2002, 14, 1541–1555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. R. A. Sharrock and T. Clack, Patterns of expression and normalized levels of the five Arabidopsis phytochromes, Plant Physiol., 2002, 130, 442–456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. A. C. Mustilli and C. Bowler, Tuning in to the signals controlling photoregulated gene expression in plants, EMBO J., 1997, 16, 5801–5806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. H. Guo, T. Mockler, H. Duong and C. Lin, SUB1, an Arabidopsis Ca2+-binding protein involved in cryptochrome and phytochrome coaction, Science, 2001, 291, 487–490.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-Il Kim.

Additional information

Presented at the 14th International Congress on Photobiology, at Jungmoon, Jeju Island, South Korea, 10th-15th June 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JI., Park, JE., Zarate, X. et al. Phytochrome phosphorylation in plant light signaling. Photochem Photobiol Sci 4, 681–687 (2005). https://doi.org/10.1039/b417912a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b417912a

Navigation