Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular pharmacology of metabotropic receptors targeted by neuropsychiatric drugs

Abstract

Metabotropic receptors are responsible for so-called ‘slow synaptic transmission’ and mediate the effects of hundreds of peptide and non-peptide neurotransmitters and neuromodulators. Over the past decade or so, a revolution in membrane-protein structural determination has clarified the molecular determinants responsible for the actions of these receptors. This Review focuses on the G protein–coupled receptors (GPCRs) that are targets of neuropsychiatric drugs and shows how insights into the structure and function of these important synaptic proteins are accelerating understanding of their actions. Notably, elucidating the structure and function of GPCRs should enhance the structure-guided discovery of novel chemical tools with which to manipulate and understand these synaptic proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Metabotropic receptors such as GPCRs modulate synaptic transmission.
Fig. 2: The availability of chemical matter is useful for obtaining GPCR structures.
Fig. 3: Structural validation of the extended ternary complex model of GPCR action.
Fig. 4: Structural rearrangements associated with distinct GPCR states.
Fig. 5: Structure-guided design of selective GPCR ligands for dopaminergic modulating neurotransmission.
Fig. 6: Structure-inspired design of ligands for GPCRs to modulate synaptic transmission.

Similar content being viewed by others

References

  1. Ullrich, A. & Schlessinger, J. Signal transduction by receptors with tyrosine kinase activity. Cell 61, 203–212 (1990).

    CAS  PubMed  Google Scholar 

  2. Schulz, S., Chinkers, M. & Garbers, D. L. The guanylate cyclase/receptor family of proteins. FASEB J. 3, 2026–2035 (1989).

    CAS  PubMed  Google Scholar 

  3. Chinkers, M. et al. A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor. Nature 338, 78–83 (1989).

    CAS  PubMed  Google Scholar 

  4. Purves, D. et al. Two families of postsynaptic receptors. in Neuroscience 2nd edn. (Sinauer Associates, 2001).

  5. Overington, J. P., Al-Lazikani, B. & Hopkins, A. L. How many drug targets are there? Nat. Rev. Drug Discov. 5, 993–996 (2006). Ref. 5 is classic paper that provides estimates for the size of the ‘druggable’ genome.

    CAS  PubMed  Google Scholar 

  6. Wacker, D., Stevens, R. C. & Roth, B. L. How ligands illuminate GPCR molecular pharmacology. Cell 170, 414–427 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hauser, A. S., Attwood, M. M., Rask-Andersen, M., Schiöth, H. B. & Gloriam, D. E. Trends in GPCR drug discovery: new agents, targets and indications. Nat. Rev. Drug Discov. 16, 829–842 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Roth, B. L., Irwin, J. J. & Shoichet, B. K. Discovery of new GPCR ligands to illuminate new biology. Nat. Chem. Biol. 13, 1143–1151 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Roth, B. L., Sheffler, D. J. & Kroeze, W. K. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat. Rev. Drug Discov. 3, 353–359 (2004).

    CAS  PubMed  Google Scholar 

  10. Marder, S. R. et al. Advancing drug discovery for schizophrenia. Ann. NY Acad. Sci. 1236, 30–43 (2011).

    CAS  PubMed  Google Scholar 

  11. Fricker, L. D. & Devi, L. A. Orphan neuropeptides and receptors: Novel therapeutic targets. Pharmacol. Ther. 185, 26–33 (2018).

    CAS  PubMed  Google Scholar 

  12. Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).

    CAS  PubMed  Google Scholar 

  13. Gerfen, C. R., Paletzki, R. & Heintz, N. GENSAT BAC cre-recombinase driver lines to study the functional organization of cerebral cortical and basal ganglia circuits. Neuron 80, 1368–1383 (2013).

    CAS  PubMed  Google Scholar 

  14. Regard, J. B., Sato, I. T. & Coughlin, S. R. Anatomical profiling of G protein-coupled receptor expression. Cell 135, 561–571 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Greengard, P. The neurobiology of slow synaptic transmission. Science 294, 1024–1030 (2001).

    CAS  PubMed  Google Scholar 

  16. Berger, M., Gray, J. A. & Roth, B. L. The expanded biology of serotonin. Annu. Rev. Med. 60, 355–366 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. McCorvy, J. D. & Roth, B. L. Structure and function of serotonin G protein-coupled receptors. Pharmacol. Ther. 150, 129–142 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Andrade, R., Malenka, R. C. & Nicoll, R. A. A. G protein couples serotonin and GABAB receptors to the same channels in hippocampus. Science 234, 1261–1265 (1986).

    CAS  PubMed  Google Scholar 

  19. Blackmer, T. et al. G protein βγ directly regulates SNARE protein fusion machinery for secretory granule exocytosis.Nat. Neurosci. 8, 421–425 (2005). Ref. 19 is one of the first demonstrations that G-protein β- and γ-subunits regulate vesicle-fusion machinery to inhibit synaptic transmission.

    CAS  PubMed  Google Scholar 

  20. Gerachshenko, T. et al. Gβγ acts at the C terminus of SNAP-25 to mediate presynaptic inhibition. Nat. Neurosci. 8, 597–605 (2005).

    CAS  PubMed  Google Scholar 

  21. Skeberdis, V. A. et al. Protein kinase A regulates calcium permeability of NMDA receptors. Nat. Neurosci. 9, 501–510 (2006).

    CAS  PubMed  Google Scholar 

  22. Carver, C. M. & Shapiro, M. S. Gq-coupled muscarinic receptor enhancement of KCNQ2/3 channels and activation of TRPC channels in multimodal control of excitability in dentate gyrus granule cells. J. Neurosci. 39, 1566–1587 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Stevens, R. C. & Wilson, I. A. Tech.Sight. Industrializing structural biology. Science 293, 519–520 (2001).

    CAS  PubMed  Google Scholar 

  24. Schertler, G. F., Villa, C. & Henderson, R. Projection structure of rhodopsin. Nature 362, 770–772 (1993). Ref. 24 provided the first cryo-EM structure of a membrane protein.

    CAS  PubMed  Google Scholar 

  25. Baldwin, J. M. The probable arrangement of the helices in G protein-coupled receptors. EMBO J. 12, 1693–1703 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Palczewski, K. et al. Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289, 739–745 (2000). Ref. 26 provided the first crystal structure of a GPCR.

    CAS  PubMed  Google Scholar 

  27. Rosenbaum, D. M. et al. GPCR engineering yields high-resolution structural insights into β2-adrenergic receptor function. Science 318, 1266–1273 (2007).

    CAS  PubMed  Google Scholar 

  28. Rasmussen, S. G. F. et al. Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature 450, 383–387 (2007).

    CAS  PubMed  Google Scholar 

  29. Cherezov, V. et al. High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318, 1258–1265 (2007). Refs. 27–29 provided the first crystal structures of non-opsin GPCRs.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Katritch, V., Cherezov, V. & Stevens, R. C. Structure-function of the G protein-coupled receptor superfamily. Annu. Rev. Pharmacol. Toxicol. 53, 531–556 (2013).

    CAS  PubMed  Google Scholar 

  31. Wang, C. et al. Structural basis for molecular recognition at serotonin receptors. Science 340, 610–614 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wacker, D. et al. Structural features for functional selectivity at serotonin receptors. Science 340, 615–619 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Peng, Y. et al. 5–HT2C receptor structures reveal the structural basis of GPCR polypharmacology. Cell 172, 719–730.e714 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, S. et al. D4 dopamine receptor high-resolution structures enable the discovery of selective agonists. Science 358, 381–386 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Gaulton, A. et al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 40, D1100–D1107 (2012).

    CAS  PubMed  Google Scholar 

  36. Roth, B. et al. Multiplicity of serotonin receptors: useless diverse molecules or an embarrassment of riches? Neuroscientist 6, 252–262 (2000).

    CAS  Google Scholar 

  37. Wang, Y. et al. PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res. 37, W623–33 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Roth, B. L. & Kroeze, W. K. Integrated approaches for genome-wide interrogation of the druggable non-olfactory G protein-coupled receptor superfamily. J. Biol. Chem. 290, 19471–19477 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Oprea, T. I. et al. Unexplored therapeutic opportunities in the human genome. Nat. Rev. Drug Discov. 17, 377 (2018).

    CAS  PubMed  Google Scholar 

  40. Yang, S. et al. Crystal structure of the Frizzled 4 receptor in a ligand-free state. Nature 560, 666–670 (2018).

    CAS  PubMed  Google Scholar 

  41. Shimamura, T. et al. Structure of the human histamine H1 receptor complex with doxepin. Nature 475, 65–70 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Haga, K. et al. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature 482, 547–551 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kruse, A. C. et al. Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482, 552–556 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Thal, D. M. et al. Crystal structures of the M1 and M4 muscarinic acetylcholine receptors. Nature 531, 335–340 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu, H. et al. Structure-guided development of selective M3 muscarinic acetylcholine receptor antagonists. Proc. Natl Acad. Sci. USA 115, 12046–12050 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Vardigan, J. D. et al. Improved cognition without adverse effects: novel M1 muscarinic potentiator compares favorably to donepezil and xanomeline in rhesus monkey. Psychopharmacology (Berl) 232, 1859–1866 (2015).

    CAS  Google Scholar 

  47. Foster, D. J., Choi, D. L., Conn, P. J. & Rook, J. M. Activation of M1 and M4 muscarinic receptors as potential treatments for Alzheimer’s disease and schizophrenia. Neuropsychiatr. Dis. Treat. 10, 183–191 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Thal, D. M., Glukhova, A., Sexton, P. M. & Christopoulos, A. Structural insights into G-protein-coupled receptor allostery. Nature 559, 45–53 (2018).

    CAS  PubMed  Google Scholar 

  49. Rasmussen, S. G. et al. Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature 477, 549–555 (2011). Ref. 49 provided the first structure of a GPCR in a complex in its active state with a G protein heterotrimer.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Rasmussen, S. G. et al. Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature 469, 175–180 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kruse, A. C. et al. Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature 504, 101–106 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Che, T. et al. Structure of the nanobody-stabilized active state of the κ opioid receptor. Cell 172, 55–67.e15 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Huang, W. et al. Structural insights into µ-opioid receptor activation. Nature 524, 315–321 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Liang, Y. L. et al. Phase-plate cryo-EM structure of a class B GPCR-G-protein complex. Nature 546, 118–123 (2017). Ref. 54 provided the first cryo-EM structure of an active GPCR in complex with G protein.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Liang, Y. L. et al. Cryo-EM structure of the active, Gs-protein complexed, human CGRP receptor. Nature 561, 492–497 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Draper-Joyce, C. J. et al. Structure of the adenosine-bound human adenosine A1 receptor-Gi complex. Nature 558, 559–563 (2018).

    CAS  PubMed  Google Scholar 

  57. García-Nafría, J., Nehmé, R., Edwards, P. C. & Tate, C. G. Cryo-EM structure of the serotonin 5-HT1B receptor coupled to heterotrimeric Go. Nature 558, 620–623 (2018).

    PubMed  PubMed Central  Google Scholar 

  58. García-Nafría, J., Lee, Y., Bai, X., Carpenter, B. & Tate, C. G. Cryo-EM structure of the adenosine A2A receptor coupled to an engineered heterotrimeric G protein. eLife 7, e35946 (2018).

    PubMed  PubMed Central  Google Scholar 

  59. Koehl, A. et al. Structure of the µ-opioid receptor-Gi protein complex. Nature 558, 547–552 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang, Y. et al. Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein. Nature 546, 248–253 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Wacker, D. et al. Crystal structure of an LSD-bound human serotonin receptor. Cell 168, 377–389.e12 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. McCorvy, J. D. et al. Structural determinants of 5-HT2B receptor activation and biased agonism. Nat. Struct. Mol. Biol. 25, 787–796 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kang, Y. et al. Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523, 561–567 (2015). Ref. 63 provided the first crystal structure of a GPCR with arrestin.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Liang, Y. L. et al. Phase-plate cryo-EM structure of a biased agonist-bound human GLP-1 receptor-Gs complex. Nature 555, 121–125 (2018).

    CAS  PubMed  Google Scholar 

  65. Liu, W. et al. Structural basis for allosteric regulation of GPCRs by sodium ions. Science 337, 232–236 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Fenalti, G. et al. Molecular control of δ-opioid receptor signalling. Nature 506, 191–196 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Staus, D. P. et al. Allosteric nanobodies reveal the dynamic range and diverse mechanisms of G-protein-coupled receptor activation. Nature 535, 448–452 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Samama, P., Cotecchia, S., Costa, T. & Lefkowitz, R. J. A mutation-induced activated state of the β2-adrenergic receptor. Extending the ternary complex model. J. Biol. Chem. 268, 4625–4636 (1993).

    CAS  PubMed  Google Scholar 

  69. Roth, B. L. DREADDs for neuroscientists. Neuron 89, 683–694 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Wacker, D. et al. Crystal structure of an LSD-bound human serotonin receptor. Cell 168, 377–389.e312 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Ballesteros, J. A. & Weinstein, H. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Meth. Neurosci. 25, 366 (1995).

    CAS  Google Scholar 

  72. McCorvy, J. D. et al. Structure-inspired design of β-arrestin-biased ligands for aminergic GPCRs. Nat. Chem. Biol. 14, 126–134 (2018).

    CAS  PubMed  Google Scholar 

  73. Ballesteros, J. A. et al. Activation of the β2-adrenergic receptor involves disruption of an ionic lock between the cytoplasmic ends of transmembrane segments 3 and 6. J. Biol. Chem. 276, 29171–29177 (2001).

    CAS  PubMed  Google Scholar 

  74. Shapiro, D. A. et al. Evidence for a model of agonist-induced activation of 5–HT2A serotonin receptors which involves the disruption of a strong ionic interaction between helices 3 and 6. J. Biol. Chem. 18, 18 (2002).

    Google Scholar 

  75. Wang, S. et al. Structure of the D2 dopamine receptor bound to the atypical antipsychotic drug risperidone. Nature 555, 269–273 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Chien, E. Y. et al. Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 330, 1091–1095 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Kumar, V. et al. Highly selective dopamine D3 receptor (D3R) antagonists and partial agonists based on eticlopride and the D3R crystal structure: new leads for opioid dependence treatment. J. Med. Chem. 59, 7634–7650 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Irwin, J. J. & Shoichet, B. K. ZINC—a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 45, 177–182 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Lyu, J. et al. Ultra-large library docking for discovering new chemotypes. Nature 566, 224–229 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Rodríguez, D., Brea, J., Loza, M. I. & Carlsson, J. Structure-based discovery of selective serotonin 5-HT(1B) receptor ligands. Structure 22, 1140–1151 (2014).

    PubMed  Google Scholar 

  81. Negri, A. et al. Discovery of a novel selective κ-opioid receptor agonist using crystal structure-based virtual screening. J. Chem. Inf. Model. 53, 521–526 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Irwin, J. J. & Shoichet, B. K. Docking screens for novel ligands conferring new biology. J. Med. Chem. 59, 4103–4120 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Urban, J. D. et al. Functional selectivity and classical concepts of quantitative pharmacology. J. Pharmacol. Exp. Ther. 320, 1–13 (2007).

    CAS  PubMed  Google Scholar 

  84. Roth, B. L. & Chuang, D.-M. Multiple mechanisms of serotonergic signal transduction. Life Sci. 41, 1051–1064 (1987). Ref. 84 provided the first explication of the principles of functional selectivity and biased agonism and antagonism.

    CAS  PubMed  Google Scholar 

  85. Allen, J. A. et al. Discovery of β-arrestin-biased dopamine D2 ligands for probing signal transduction pathways essential for antipsychotic efficacy. Proc. Natl Acad. Sci. USA 108, 18488–18493 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Boerrigter, G. et al. Cardiorenal actions of TRV120027, a novel β-arrestin-biased ligand at the angiotensin II type I receptor, in healthy and heart failure canines: a novel therapeutic strategy for acute heart failure. Circ. Heart Fail. 4, 770–778 (2011).

    CAS  PubMed  Google Scholar 

  87. Chen, X. et al. Discovery of G protein-biased D2 dopamine receptor partial agonists. J. Med. Chem. 59, 10601–10618 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Chen, X. T. et al. Structure-activity relationships and discovery of a G protein biased μ opioid receptor ligand, [(3-methoxythiophen-2-yl)methyl](2-[(9R)-9-(pyridin-2-yl)-6-oxaspiro-[4.5]decan-9-yl]ethyl)amine (TRV130), for the treatment of acute severe pain. J. Med. Chem. 56, 8019–8031 (2013).

    CAS  PubMed  Google Scholar 

  89. Lovell, K. M. et al. Structure-activity relationship studies of functionally selective κ opioid receptor agonists that modulate ERK 1/2 phosphorylation while preserving G protein over βarrestin2 signaling bias. ACS Chem. Neurosci. 6, 1411–1419 (2015).

    CAS  PubMed  Google Scholar 

  90. Wootten, D., Christopoulos, A., Marti-Solano, M., Babu, M. M. & Sexton, P. M. Mechanisms of signalling and biased agonism in G protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 19, 638–653 (2018).

    CAS  PubMed  Google Scholar 

  91. Smith, J. S., Lefkowitz, R. J. & Rajagopal, S. Biased signalling: from simple switches to allosteric microprocessors. Nat. Rev. Drug Discov. 17, 243–260 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Manglik, A. et al. Structure-based discovery of opioid analgesics with reduced side effects. Nature 537, 185–190 (2016). Ref. 92 reports structure-guided discovery of biased ligands.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Váradi, A. et al. Mitragynine/corynantheidine pseudoindoxyls as opioid analgesics with μ agonism and δ antagonism, which do not recruit β-arrestin-2. J. Med. Chem. 59, 8381–8397 (2016).

    PubMed  PubMed Central  Google Scholar 

  94. Schmid, C. L. et al. Bias factor and therapeutic window correlate to predict safer opioid analgesics. Cell 171, 1165–1175.e1113 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. White, K. L. et al. Identification of novel functionally selective κ-opioid receptor scaffolds. Mol. Pharmacol. 85, 83–90 (2014).

    PubMed  PubMed Central  Google Scholar 

  96. Roth, B. L. et al. Salvinorin A: a potent naturally occurring nonnitrogenous κ opioid selective agonist. Proc. Natl Acad. Sci. USA 99, 11934–11939 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Crowley, R. S. et al. Synthetic studies of neoclerodane diterpenes from salvia divinorum: identification of a potent and centrally acting μ opioid analgesic with reduced abuse liability. J. Med. Chem. 59, 11027–11038 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Park, S. M. et al. Effects of β-arrestin-biased dopamine D2 receptor ligands on schizophrenia-like behavior in hypoglutamatergic mice. Neuropsychopharmacology 41, 704–715 (2016).

    CAS  PubMed  Google Scholar 

  99. Choi, M. et al. G protein–coupled receptor kinases (GRKs) orchestrate biased agonism at the β2-adrenergic receptor. Sci Signal 11, eaar7084 (2018).

    PubMed  Google Scholar 

  100. Mohr, P., Decker, M., Enzensperger, C. & Lehmann, J. Dopamine/serotonin receptor ligands. 12(1): SAR studies on hexahydro-dibenz[d,g]azecines lead to 4-chloro-7-methyl-5,6,7,8,9,14-hexahydrodibenz[d,g]azecin-3-ol, the first picomolar D5-selective dopamine-receptor antagonist. J. Med. Chem. 49, 2110–2116 (2006).

    CAS  PubMed  Google Scholar 

  101. Gentry, P. R. et al. Discovery, synthesis and characterization of a highly muscarinic acetylcholine receptor (mAChR)-selective M5-orthosteric antagonist, VU0488130 (ML381): a novel molecular probe. ChemMedChem 9, 1677–1682 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Huang, X. P. et al. Allosteric ligands for the pharmacologically dark receptors GPR68 and GPR65. Nature 527, 477–483 (2015). Ref. 102 reports structure-inspired discovery of allosteric ligands for an orphan GPCR.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Lansu, K. et al. In silico design of novel probes for the atypical opioid receptor MRGPRX2. Nat. Chem. Biol. 13, 529–536 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Kroeze, W. K. et al. PRESTO-Tango as an open-source resource for interrogation of the druggable human GPCRome. Nat. Struct. Mol. Biol. 22, 362–369 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Ngo, T. et al. Orphan receptor ligand discovery by pickpocketing pharmacological neighbors. Nat. Chem. Biol. 13, 235–242 (2017).

    CAS  PubMed  Google Scholar 

  106. Ngo, T. et al. Identifying ligands at orphan GPCRs: current status using structure-based approaches. Br. J. Pharmacol. 173, 2934–2951 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Trauelsen, M. et al. Receptor structure-based discovery of non-metabolite agonists for the succinate receptor GPR91. Mol. Metab. 6, 1585–1596 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Meixiong, J. et al. Identification of a bilirubin receptor that may mediate a component of cholestatic itch. eLife 8, e44116 (2019).

    PubMed  PubMed Central  Google Scholar 

  109. Kozlitina, J. et al. An African-specific haplotype in MRGPRX4 is associated with menthol cigarette smoking. PLoS Genet. 15, e1007916 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Dong, X., Han, S., Zylka, M. J., Simon, M. I. & Anderson, D. J. A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons. Cell 106, 619–632 (2001).

    CAS  PubMed  Google Scholar 

  111. Ehrlich, A. T. et al. Expression map of 78 brain-expressed mouse orphan GPCRs provides a translational resource for neuropsychiatric research. Commun Biol 1, 102 (2018).

    PubMed  PubMed Central  Google Scholar 

  112. Oprea, T. I. et al. Far away from the lamppost. PLoS Biol. 16, e3000067 (2018).

    PubMed  PubMed Central  Google Scholar 

  113. Dar, A. C., Das, T. K., Shokat, K. M. & Cagan, R. L. Chemical genetic discovery of targets and anti-targets for cancer polypharmacology. Nature 486, 80–84 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Boyle, E. A., Li, Y. I. & Pritchard, J. K. An expanded view of complex traits: from polygenic to omnigenic. Cell 169, 1177–1186 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Shih, H. P., Zhang, X. & Aronov, A. M. Drug discovery effectiveness from the standpoint of therapeutic mechanisms and indications. Nat. Rev. Drug Discov. 17, 78 (2018).

    CAS  PubMed  Google Scholar 

  116. Besnard, J. et al. Automated design of ligands to polypharmacological profiles. Nature 492, 215–220 (2012).

    CAS  PubMed  Google Scholar 

  117. Anighoro, A., Bajorath, J. & Rastelli, G. Polypharmacology: challenges and opportunities in drug discovery. J. Med. Chem. 57, 7874–7887 (2014).

    CAS  PubMed  Google Scholar 

  118. Weiss, D. R. et al. Selectivity challenges in docking screens for GPCR targets and antitargets. J. Med. Chem. 61, 6830–6845 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Micklus, A. & Muntner, S. Biopharma deal-making in 2016. Nat. Rev. Drug Discov. 16, 161–162 (2017).

    CAS  PubMed  Google Scholar 

  120. Morrison, C. & Lähteenmäki, R. Public biotech in 2015 - the numbers. Nat. Biotechnol. 34, 709–715 (2016).

    CAS  PubMed  Google Scholar 

  121. Blundell, C. D. & Almond, A. Method for determining three-dimensional structures of dynamic molecules. UK patent 0718027.6 (2017).

  122. Christopher, J. A. et al. Fragment and structure-based drug discovery for a class C GPCR: discovery of the mGlu5 negative allosteric modulator HTL14242 (3-chloro-5-[6-(5-fluoropyridin-2-yl)pyrimidin-4-yl]benzonitrile. J. Med. Chem. 58, 6653–6664 (2015).

    CAS  PubMed  Google Scholar 

  123. Harrison, R. K. Phase II and phase III failures: 2013-2015. Nat. Rev. Drug Discov. 15, 817–818 (2016).

    CAS  PubMed  Google Scholar 

  124. Lyu, J. et al. Ultra-large library docking for discovering new chemotypes. Nature 566, 224–229 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Singla, N. K. et al. APOLLO-1: a randomized, controlled, phase 3 study of oliceridine (TRV130) for the treatment of moderate to severe pain following bunionectomy. Spine J. 17, S2017 (2017).

    Google Scholar 

  126. Araldi, D., Ferrari, L. F. & Levine, J. D. Mu-opioid receptor (MOR) biased agonists induce biphasic dose-dependent hyperalgesia and analgesia, and hyperalgesic priming in the rat. Neuroscience 394, 60–71 (2018).

    CAS  PubMed  Google Scholar 

  127. Austin Zamarripa, C. et al. The G-protein biased mu-opioid agonist, TRV130, produces reinforcing and antinociceptive effects that are comparable to oxycodone in rats. Drug Alcohol Depend. 192, 158–162 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Kunkel, M. T. & Peralta, E. G. Identification of domains conferring G protein regulation on inward rectifier potassium channels. Cell 83, 443–449 (1995).

    CAS  PubMed  Google Scholar 

  129. Alexander, G. M. et al. Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron 63, 27–39 (2009). Ref. 129 was the first paper to demonstrate that designer receptors exclusively activated by designer drugs can activate neuronal activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Tang, L., Todd, R. D., Heller, A. & O’Malley, K. L. Pharmacological and functional characterization of D2, D3 and D4 dopamine receptors in fibroblast and dopaminergic cell lines. J. Pharmacol. Exp. Ther. 268, 495–502 (1994).

    CAS  PubMed  Google Scholar 

  131. Doré, A. S. et al. Structure of the adenosine A2A receptor in complex with ZM241385 and the xanthines XAC and caffeine. Structure 19, 1283–1293 (2011).

    PubMed  PubMed Central  Google Scholar 

  132. Cherezov, V. et al. High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318, 1258–1265 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Warne, T. et al. Structure of a β1-adrenergic G-protein-coupled receptor. Nature 454, 486–491 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Kimura, K. T. et al. Structures of the 5-HT2A receptor in complex with the antipsychotics risperidone and zotepine. Nat. Struct. Mol. Biol. 26, 121–128 (2019).

    CAS  PubMed  Google Scholar 

  135. Hua, T. et al. Crystal structure of the human cannabinoid receptor CB1. Cell 167, 750–762.e714 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Manglik, A. et al. Crystal structure of the µ-opioid receptor bound to a morphinan antagonist. Nature 485, 321–326 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Wu, H. et al. Structure of the human κ-opioid receptor in complex with JDTic. Nature 485, 327–332 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Yin, J. et al. Structure and ligand-binding mechanism of the human OX1 and OX2 orexin receptors. Nat. Struct. Mol. Biol. 23, 293–299 (2016).

    CAS  PubMed  Google Scholar 

  139. Hanson, M. A. et al. Crystal structure of a lipid G protein-coupled receptor. Science 335, 851–855 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Misono, K. S. et al. Structure, signaling mechanism and regulation of the natriuretic peptide receptor guanylate cyclase. FEBS J. 278, 1818–1829 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author thanks W. Kroeze for editing and comments. Work described in this Review was funded by grants and contracts from the US National Institute of Health as well as the Michael Hooker Distinguished Professorship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan L. Roth.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Peer review information: Katarzyna Marcinkiewicz was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roth, B.L. Molecular pharmacology of metabotropic receptors targeted by neuropsychiatric drugs. Nat Struct Mol Biol 26, 535–544 (2019). https://doi.org/10.1038/s41594-019-0252-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-019-0252-8

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research