Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Chemogenetics for cell-type-specific modulation of signalling and neuronal activity

Abstract

Chemogenetics is an approach for engineering proteins to enable their modulation by otherwise inert small molecules. Although kinases, enzymes and ion channels have been used for chemogenetics, the most widely used platform is based on G protein-coupled receptors (GPCRs), using designer receptors exclusively activated by designer drugs (DREADDs). DREADDs have been used ubiquitously to modulate cellular signalling and neuronal activity and are a key technology for modern causal neuroscience. Here we provide a Primer on key aspects of DREADD technology, emphasizing how to reliably design and validate chemogenetic transducers and actuators. We also provide recommendations for the use of DREADDs for specialized applications including modulating metabolically essential peripheral tissues and distinct neuronal populations in non-human primates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemogenetics developments over time.
Fig. 2: Signalling pathways and subsequent neuronal modulation by typical designer receptor exclusively activated by designer drugs.
Fig. 3: Characterization of G protein selectivity.
Fig. 4: Chemogenetic actuators differ in on-target and off-target activities.
Fig. 5: Recommended strategy for profiling new chemogenetic actuators.
Fig. 6: DREADD expression in a cell-type-specific fashion.
Fig. 7: PET imaging for validation of designer receptors exclusively activated by designer drug expression and function in vivo.

Similar content being viewed by others

References

  1. Hopkins, A. L. & Groom, C. R. The druggable genome. Nat. Rev. Drug Discov. 1, 727–730 (2002).

    Article  Google Scholar 

  2. Wacker, D., Stevens, R. C. & Roth, B. L. How ligands illuminate GPCR molecular pharmacology. Cell 170, 414–427 (2017).

    Article  Google Scholar 

  3. Roth, B. L. Molecular pharmacology of metabotropic receptors targeted by neuropsychiatric drugs. Nat. Struct. Mol. Biol. 26, 535–544 (2019).

    Article  Google Scholar 

  4. Regard, J. B., Sato, I. T. & Coughlin, S. R. Anatomical profiling of G protein-coupled receptor expression. Cell 135, 561–571 (2008).

    Article  Google Scholar 

  5. Berman, R. M. et al. Antidepressant effects of ketamine in depressed patients. Biol. Psychiatry 47, 351–354 (2000).

    Article  Google Scholar 

  6. Reisberg, B. et al. Memantine in moderate-to-severe Alzheimer’s disease. N. Engl. J. Med. 348, 1333–1341 (2003).

    Article  Google Scholar 

  7. Errington, A. C., Stohr, T. & Lees, G. Voltage gated ion channels: targets for anticonvulsant drugs. Curr. Top. Med. Chem. 5, 15–30 (2005).

    Article  Google Scholar 

  8. Elkins, J. M. et al. Comprehensive characterization of the Published Kinase Inhibitor Set. Nat. Biotechnol. 34, 95–103 (2016).

    Article  Google Scholar 

  9. Changeux, J. P. & Christopoulos, A. Allosteric modulation as a unifying mechanism for receptor function and regulation. Cell 166, 1084–1102 (2016).

    Article  Google Scholar 

  10. Keiser, M. J. et al. Predicting new molecular targets for known drugs. Nature 462, 175–181 (2009).

    Article  ADS  Google Scholar 

  11. Besnard, J. et al. Automated design of ligands to polypharmacological profiles. Nature 492, 215–220 (2012).

    Article  ADS  Google Scholar 

  12. Roth, B. L., Sheffler, D. J. & Kroeze, W. K. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat. Rev. Drug Discov. 3, 353–359 (2004).

    Article  Google Scholar 

  13. Yadav, P. N. et al. The presynaptic component of the serotonergic system is required for clozapine’s efficacy. Neuropsychopharmacology 36, 638–651 (2011).

    Article  Google Scholar 

  14. Cao, C. et al. Structure, function and pharmacology of human itch GPCRs. Nature 600, 170–175 (2021).

    Article  ADS  Google Scholar 

  15. Keiser, M. et al. Relating protein pharmacology by ligand chemistry. Nat. Biotechnol. 25, 197–206 (2007).

    Article  Google Scholar 

  16. McGovern, S. L. & Shoichet, B. K. Kinase inhibitors: not just for kinases anymore. J. Med. Chem. 46, 1478–1483 (2003).

    Article  Google Scholar 

  17. Anastassiadis, T., Deacon, S. W., Devarajan, K., Ma, H. & Peterson, J. R. Comprehensive assay of kinase catalytic activity reveals features of kinase inhibitor selectivity. Nat. Biotechnol. 29, 1039–1045 (2011).

    Article  Google Scholar 

  18. Arrowsmith, C. H. et al. The promise and peril of chemical probes. Nat. Chem. Biol. 11, 536–541 (2015).

    Article  Google Scholar 

  19. Strader, C. D. et al. Allele-specific activation of genetically engineered receptors. J. Biol. Chem. 266, 5–8 (1991).

    Article  Google Scholar 

  20. Coward, P. et al. Controlling signaling with a specifically designed Gi-coupled receptor. Proc. Natl Acad. Sci. USA 95, 352–357 (1998).

    Article  ADS  Google Scholar 

  21. Westkaemper, R. et al. Engineering in a region of bulk tolerance into the 5-HT2A receptor. Eur. J. Med. Chem. 34, 441–447 (1999).

    Article  Google Scholar 

  22. Bishop, A. C. et al. Design of allele-specific inhibitors to probe protein kinase signaling. Curr. Biol. 8, 257–266 (1998).

    Article  Google Scholar 

  23. Liu, Y., Shah, K., Yang, F., Witucki, L. & Shokat, K. M. Engineering Src family protein kinases with unnatural nucleotide specificity. Chem. Biol. 5, 91–101 (1998).

    Article  Google Scholar 

  24. Bishop, A. C. et al. A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature 407, 395–401 (2000).

    Article  ADS  Google Scholar 

  25. Lopez, M. S. et al. Staurosporine-derived inhibitors broaden the scope of analog-sensitive kinase technology. J. Am. Chem. Soc. 135, 18153–18159 (2013).

    Article  Google Scholar 

  26. Lerchner, W. et al. Reversible silencing of neuronal excitability in behaving mice by a genetically targeted, ivermectin-gated Cl-channel. Neuron 54, 35–49 (2007).

    Article  Google Scholar 

  27. Magnus, C. J. et al. Chemical and genetic engineering of selective ion channel-ligand interactions. Science 333, 1292–1296 (2011).

    Article  ADS  Google Scholar 

  28. Magnus, C. J. et al. Ultrapotent chemogenetics for research and potential clinical applications. Science 364, eaav5282 (2019).

    Article  ADS  Google Scholar 

  29. Weir, G. A. et al. Using an engineered glutamate-gated chloride channel to silence sensory neurons and treat neuropathic pain at the source. Brain 140, 2570–2585 (2017).

    Article  Google Scholar 

  30. Raper, J. et al. Characterization of ultrapotent chemogenetic ligands for research applications in nonhuman primates. ACS Chem. Neurosci. 13, 3118–3125 (2022).

    Article  Google Scholar 

  31. Armbruster, B. & Roth, B. Creation of designer biogenic amine receptors via directed molecular evolution. Neuropsychopharmacology 30, S265 (2005).

    Google Scholar 

  32. Armbruster, B. N., Li, X., Pausch, M. H., Herlitze, S. & Roth, B. L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl Acad. Sci. USA 104, 5163–5168 (2007).

    Article  ADS  Google Scholar 

  33. Vardy, E. et al. A new DREADD facilitates the multiplexed chemogenetic interrogation of behavior. Neuron 86, 936–946 (2015).

    Article  Google Scholar 

  34. Bolognini, D. et al. Chemogenetics defines receptor-mediated functions of short chain free fatty acids. Nat. Chem. Biol. 15, 489–498 (2019).

    Article  Google Scholar 

  35. Alexander, G. M. et al. Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron 63, 27–39 (2009).

    Article  Google Scholar 

  36. Farrell, M. S. et al. A Galphas DREADD mouse for selective modulation of cAMP production in striatopallidal neurons. Neuropsychopharmacology 38, 854–862 (2013).

    Article  Google Scholar 

  37. Agulhon, C. et al. Modulation of the autonomic nervous system and behaviour by acute glial cell Gq protein-coupled receptor activation in vivo. J. Physiol. 591, 5599–5609 (2013).

    Article  Google Scholar 

  38. Grace, P. M. et al. Morphine paradoxically prolongs neuropathic pain in rats by amplifying spinal NLRP3 inflammasome activation. Proc. Natl Acad. Sci. USA 113, E3441–E3450 (2016).

    Article  Google Scholar 

  39. Meister, J., Wang, L., Pydi, S. P. & Wess, J. Chemogenetic approaches to identify metabolically important GPCR signaling pathways: therapeutic implications. J. Neurochem. 158, 603–620 (2021).

    Article  Google Scholar 

  40. Inoue, A. et al. Illuminating G-protein-coupling selectivity of GPCRs. Cell 177, 1933–1947 e1925 (2019).

    Article  Google Scholar 

  41. Nakajima, K. I. & Wess, J. Design and functional characterization of a novel, arrestin-biased designer G protein-coupled receptor. Mol. Pharmacol. 82, 575–582 (2012).

    Article  Google Scholar 

  42. Zhang, S. et al. Molecular basis for selective activation of DREADD-based chemogenetics. Nature 612, 354–362 (2022).

    Article  ADS  Google Scholar 

  43. Nagai, Y. et al. Deschloroclozapine, a potent and selective chemogenetic actuator enables rapid neuronal and behavioral modulations in mice and monkeys. Nat. Neurosci. 23, 1157–1167 (2020).

    Article  Google Scholar 

  44. Thompson, K. J. et al. DREADD agonist 21 is an effective agonist for muscarinic-based DREADDs in vitro and in vivo. ACS Pharmacol. Transl. Sci. 14, 61–72 (2018).

    Article  Google Scholar 

  45. Roth, B. L. DREADDs for neuroscientists. Neuron 89, 683–694 (2016).

    Article  Google Scholar 

  46. Levey, A. I., Edmunds, S. M., Koliatsos, V., Wiley, R. G. & Heilman, C. J. Expression of m1–m4 muscarinic acetylcholine receptor proteins in rat hippocampus and regulation by cholinergic innervation. J. Neurosci. 15, 4077–4092 (1995).

    Article  Google Scholar 

  47. Levey, A. I., Edmunds, S. M., Hersch, S. M., Wiley, R. G. & Heilman, C. J. Light and electron microscopic study of m2 muscarinic acetylcholine receptor in the basal forebrain of the rat. J. Comp. Neurol. 351, 339–356 (1995).

    Article  Google Scholar 

  48. Hohmann, C. F., Potter, E. D. & Levey, A. I. Development of muscarinic receptor subtypes in the forebrain of the mouse. J. Comp. Neurol. 358, 88–101 (1995).

    Article  Google Scholar 

  49. Hersch, S. M. & Levey, A. I. Diverse pre- and post-synaptic expression of m1–m4 muscarinic receptor proteins in neurons and afferents in the rat neostriatum. Life Sci. 56, 931–938 (1995).

    Article  Google Scholar 

  50. Brann, M. R. et al. Studies of the pharmacology, localization, and structure of muscarinic acetylcholine receptors. Ann. N. Y. Acad. Sci. 707, 225–236 (1993).

    Article  ADS  Google Scholar 

  51. Hudson, B. D. et al. Chemically engineering ligand selectivity at the free fatty acid receptor 2 based on pharmacological variation between species orthologs. FASEB J. 26, 4951–4965 (2012).

    Article  Google Scholar 

  52. Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).

    Article  ADS  Google Scholar 

  53. Ferguson, S. M. et al. Transient neuronal inhibition reveals opposing roles of indirect and direct pathways in sensitization. Nat. Neurosci. 14, 22–24 (2011).

    Article  Google Scholar 

  54. Marchant, N. J. et al. Behavioral and physiological effects of a novel kappa-opioid receptor-based DREADD in rats. Neuropsychopharmacology 41, 402–409 (2016).

    Article  Google Scholar 

  55. Liu, X. et al. Epac2 in midbrain dopamine neurons contributes to cocaine reinforcement via enhancement of dopamine release. eLife 11, e80747 (2022).

    Google Scholar 

  56. Cheng, D. et al. Noradrenergic consolidation of social recognition memory is mediated by beta-arrestin-biased signaling in the mouse prefrontal cortex. Commun. Biol. 5, 1097 (2022).

    Article  Google Scholar 

  57. Olsen, R. H. J. et al. TRUPATH, an open-source biosensor platform for interrogating the GPCR transducerome. Nat. Chem. Biol. 16, 841–849 (2020).

    Article  Google Scholar 

  58. Bender, D., Holschbach, M. & Stocklin, G. Synthesis of n.c.a. carbon-11 labelled clozapine and its major metabolite clozapine-N-oxide and comparison of their biodistribution in mice. Nucl. Med. Biol. 21, 921–925 (1994).

    Article  Google Scholar 

  59. Jann, M. W., Lam, Y. W. & Chang, W. H. Rapid formation of clozapine in guinea-pigs and man following clozapine-N-oxide administration. Arch. Int. Pharmacodyn. Ther. 328, 243–250 (1994).

    Google Scholar 

  60. Gomez, J. L. et al. Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. Science 357, 503–507 (2017).

    Article  ADS  Google Scholar 

  61. Urban, D. J. et al. Elucidation of the behavioral program and neuronal network encoded by dorsal raphe serotonergic neurons. Neuropsychopharmacology 41, 1404–1415 (2016).

    Article  Google Scholar 

  62. Zhu, H. et al. Designer receptors exclusively activated by designer drugs mice.Genesis 54, 439–446 (2016).

    Article  Google Scholar 

  63. Roth, B. et al. A potent naturally occurring nonnitrogenous kappa opioid selective agonist. Proc. Natl Acad. Sci. USA 99, 11934–11939 (2002).

    Article  ADS  Google Scholar 

  64. Kroeze, W. K. et al. PRESTO-TANGO as an open-source resource for interrogation of the druggable human GPCRome. Nat. Struct. Mol. Biol. 22, 362–U328 (2015).

    Article  Google Scholar 

  65. Schinkel, A. H. et al. Multidrug resistance and the role of P-glycoprotein knockout mice. Eur. J. Cancer 31A, 1295–1298 (1995).

    Article  Google Scholar 

  66. Gottesman, M. M., Pastan, I. & Ambudkar, S. V. P-glycoprotein and multidrug resistance. Curr. Opin. Genet. Dev. 6, 610–617 (1996).

    Article  Google Scholar 

  67. Mason, B. L., Pariante, C. M. & Thomas, S. A. A revised role for P-glycoprotein in the brain distribution of dexamethasone, cortisol, and corticosterone in wild-type and ABCB1A/B-deficient mice. Endocrinology 149, 5244–5253 (2008).

    Article  Google Scholar 

  68. Zhang, S. et al. Inactive and active state structures template selective tools for the human 5-HT5A receptor. Nat. Struct. Mol. Biol. 29, 677–687 (2022).

    Article  Google Scholar 

  69. Wu, H. et al. Structure of the human kappa-opioid receptor in complex with JDTic. Nature 485, 327–332 (2012).

    Article  ADS  Google Scholar 

  70. Vardy, E. et al. Chemotype-selective modes of action of kappa-opioid receptor agonists. J. Biol. Chem. 288, 34470–34483 (2013).

    Article  Google Scholar 

  71. Javitch, J. A., Ballesteros, J. A., Chen, J., Chiappa, V. & Simpson, M. M. Electrostatic and aromatic microdomains within the binding-site crevice of the D2 receptor: contributions of the second membrane-spanning segment [in process citation]. Biochemistry 38, 7961–7968 (1999).

    Article  Google Scholar 

  72. Yan, F., Mosier, P. D., Westkaemper, R. B. & Roth, B. L. Galpha-subunits differentially alter the conformation and agonist affinity of kappa-opioid receptors. Biochemistry 47, 1567–1578 (2008).

    Article  Google Scholar 

  73. Zhang, B., Li, L. & Lu, Q. Protein solvent-accessibility prediction by a stacked deep bidirectional recurrent neural network. Biomolecules 8, 33 (2018).

    Article  Google Scholar 

  74. Dong, S., Rogan, S. C. & Roth, B. L. Directed molecular evolution of DREADDs: a generic approach to creating next-generation RASSLs. Nat. Protoc. 5, 561–573 (2010).

    Article  Google Scholar 

  75. English, J. G. et al. VEGAS as a platform for facile directed evolution in mammalian cells. Cell 178, 748–761.e17 (2019).

    Article  Google Scholar 

  76. Kaplan, A. L. et al. Bespoke library docking for 5-HT2A receptor agonists with antidepressant activity. Nature 610, 582–591 (2022).

    Article  ADS  Google Scholar 

  77. Irwin, J. J. & Shoichet, B. K. ZINC — a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 45, 177–182 (2005).

    Article  Google Scholar 

  78. Hooker, J. M., Patel, V., Kothari, S. & Schiffer, W. K. Metabolic changes in the rodent brain after acute administration of salvinorin A. Mol. Imaging Biol. 11, 137–143 (2009).

    Article  Google Scholar 

  79. Hooker, J. M. et al. Salvinorin A and derivatives: protection from metabolism does not prolong short-term, whole-brain residence. Neuropharmacology 57, 386–391 (2009).

    Article  Google Scholar 

  80. Garner, A. R. et al. Generation of a synthetic memory trace. Science 335, 1513–1516 (2012).

    Article  ADS  Google Scholar 

  81. Zhu, H. et al. Chemogenetic inactivation of ventral hippocampal glutamatergic neurons disrupts consolidation of contextual fear memory. Neuropsychopharmacology 39, 1880–1092 (2014).

    Article  Google Scholar 

  82. Mimura, K. et al. Chemogenetic activation of nigrostriatal dopamine neurons in freely moving common marmosets. iScience 24, 103066 (2021).

    Article  ADS  Google Scholar 

  83. Perez, P., Chavret-Reculon, E., Ravassard, P. & Bouret, S. Using inhibitory DREADDs to silence LC neurons in monkeys. Brain Sci. 12, 206 (2022).

    Article  Google Scholar 

  84. Krashes, M. J. et al. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J. Clin. Invest. 121, 1424–1428 (2011).

    Article  Google Scholar 

  85. Atasoy, D., Betley, J. N., Su, H. H. & Sternson, S. M. Deconstruction of a neural circuit for hunger. Nature 488, 172–177 (2012).

    Article  ADS  Google Scholar 

  86. Oguchi, M. et al. Chemogenetic inactivation reveals the inhibitory control function of the prefronto-striatal pathway in the macaque brain. Commun. Biol. 4, 1088 (2021).

    Article  Google Scholar 

  87. Wang, L. et al. Selective activation of G(s) signaling in adipocytes causes striking metabolic improvements in mice. Mol. Metab. 27, 83–91 (2019).

    Article  Google Scholar 

  88. Wang, L. et al. Adipocyte Gi signaling is essential for maintaining whole-body glucose homeostasis and insulin sensitivity. Nat. Commun. 11, 2995 (2020).

    Article  ADS  Google Scholar 

  89. Caron, A. et al. Adipocyte Gs but not Gi signaling regulates whole-body glucose homeostasis. Mol. Metab. 27, 11–21 (2019).

    Article  Google Scholar 

  90. Zhu, L. et al. Intra-islet glucagon signaling is critical for maintaining glucose homeostasis. JCI Insight 5, e127994 (2019).

    Article  Google Scholar 

  91. Liu, L. et al. Gq signaling in alpha cells is critical for maintaining euglycemia. JCI Insight 6, e152852 (2021).

    Article  Google Scholar 

  92. Meister, J. et al. In vivo metabolic effects after acute activation of skeletal muscle G(s) signaling. Mol. Metab. 55, 101415 (2022).

    Article  Google Scholar 

  93. Lewis, J. E. et al. Selective stimulation of colonic L cells improves metabolic outcomes in mice. Diabetologia 63, 1396–1407 (2020).

    Article  Google Scholar 

  94. Ji, B. et al. Multimodal imaging for DREADD-expressing neurons in living brain and their application to implantation of iPSC-derived neural progenitors. J. Neurosci. 36, 11544–11558 (2016).

    Article  Google Scholar 

  95. Bonaventura, J. et al. High-potency ligands for DREADD imaging and activation in rodents and monkeys. Nat. Commun. 10, 4627 (2019).

    Article  ADS  Google Scholar 

  96. Nagai, Y. et al. PET imaging-guided chemogenetic silencing reveals a critical role of primate rostromedial caudate in reward evaluation. Nat. Commun. 7, 13605 (2016).

    Article  ADS  Google Scholar 

  97. Krishnan, S., Heer, C., Cherian, C. & Sheffield, M. E. J. Reward expectation extinction restructures and degrades CA1 spatial maps through loss of a dopaminergic reward proximity signal. Nat. Commun. 13, 6662 (2022).

    Article  ADS  Google Scholar 

  98. Nentwig, T. B., Obray, J. D., Vaughan, D. T. & Chandler, L. J. Behavioral and slice electrophysiological assessment of DREADD ligand, deschloroclozapine (DCZ) in rats. Sci. Rep. 12, 6595 (2022).

    Article  ADS  Google Scholar 

  99. Cerpa, J. C. et al. Inhibition of noradrenergic signalling in rodent orbitofrontal cortex impairs the updating of goal-directed actions. eLife 12, e81623 (2023).

    Article  Google Scholar 

  100. Iwasaki, M. et al. An analgesic pathway from parvocellular oxytocin neurons to the periaqueductal gray in rats. Nat. Commun. 14, 1066 (2023).

    Article  ADS  Google Scholar 

  101. Upright, N. A. & Baxter, M. G. Effect of chemogenetic actuator drugs on prefrontal cortex-dependent working memory in nonhuman primates. Neuropsychopharmacology 45, 1793–1798 (2020).

    Article  Google Scholar 

  102. Fujimoto, A. et al. Resting-state fMRI-based screening of deschloroclozapine in rhesus macaques predicts dosage-dependent behavioral effects. J. Neurosci. 42, 5705–5716 (2022).

    Article  Google Scholar 

  103. Cushnie, A. K. et al. The use of chemogenetic actuator ligands in nonhuman primate DREADDs-fMRI. Curr. Res. Neurobiol. 4, 100072 (2023).

    Article  Google Scholar 

  104. Krause, W. C. et al. Oestrogen engages brain MC4R signalling to drive physical activity in female mice. Nature 599, 131–135 (2021).

    Article  ADS  Google Scholar 

  105. Claes, M. et al. Chronic chemogenetic activation of the superior colliculus in glaucomatous mice: local and retrograde molecular signature. Cells 11, 1784 (2022).

    Article  Google Scholar 

  106. Oyama, K. et al. Chronic behavioral manipulation via orally delivered chemogenetic actuator in macaques. J. Neurosci. 42, 2552–2561 (2022).

    Article  Google Scholar 

  107. Stachniak, T. J., Ghosh, A. & Sternson, S. M. Chemogenetic synaptic silencing of neural circuits localizes a hypothalamus→midbrain pathway for feeding behavior. Neuron 82, 797–808 (2014).

    Article  Google Scholar 

  108. Zheng, L., Wang, Z., Liu, Y., Zhao, J. & Huang, S. Activation of the RMTg nucleus by chemogenetic techniques alleviates the learning and memory impairment in APP/PS1 mice. Neuropsychiatric Dis. Treat. 18, 2957–2965 (2022).

    Article  Google Scholar 

  109. Oyama, K. et al. Chemogenetic dissection of the primate prefronto-subcortical pathways for working memory and decision-making. Sci. Adv. 7, eabg4246 (2021).

    Article  ADS  Google Scholar 

  110. Parnaudeau, S. et al. Inhibition of mediodorsal thalamus disrupts thalamofrontal connectivity and cognition. Neuron 77, 1151–1162 (2013).

    Article  Google Scholar 

  111. Hayashi, T. et al. Macaques exhibit implicit gaze bias anticipating others’ false-belief-driven actions via medial prefrontal cortex. Cell Rep. 30, 4433–4444.e5 (2020).

    Article  Google Scholar 

  112. Deffains, M. et al. In vivo electrophysiological validation of DREADD-based modulation of pallidal neurons in the non-human primate. Eur. J. Neurosci. 53, 2192–2204 (2021).

    Article  Google Scholar 

  113. Hasegawa, T., Chiken, S., Kobayashi, K. & Nambu, A. Subthalamic nucleus stabilizes movements by reducing neural spike variability in monkey basal ganglia. Nat. Commun. 13, 2233 (2022).

    Article  ADS  Google Scholar 

  114. Miyakawa, N. et al. Chemogenetic attenuation of cortical seizures in nonhuman primates. Nat. Commun. 14, 971 (2023).

    Article  ADS  Google Scholar 

  115. Anacker, C. et al. Hippocampal neurogenesis confers stress resilience by inhibiting the ventral dentate gyrus. Nature 559, 98–102 (2018).

    Article  ADS  Google Scholar 

  116. Michaelides, M. et al. Whole-brain circuit dissection in free-moving animals reveals cell-specific mesocorticolimbic networks. J. Clin. Invest. 123, 5342–5350 (2013).

    Article  Google Scholar 

  117. Casado-Sainz, A. et al. Dorsal striatal dopamine induces fronto-cortical hypoactivity and attenuates anxiety and compulsive behaviors in rats. Neuropsychopharmacology 47, 454–464 (2022).

    Article  Google Scholar 

  118. Roelofs, T. J. M. et al. A novel approach to map induced activation of neuronal networks using chemogenetics and functional neuroimaging in rats: a proof-of-concept study on the mesocorticolimbic system. NeuroImage 156, 109–118 (2017).

    Article  Google Scholar 

  119. Peeters, L. M. et al. Chemogenetic silencing of neurons in the mouse anterior cingulate area modulates neuronal activity and functional connectivity. NeuroImage 220, 117088 (2020).

    Article  Google Scholar 

  120. Crawley, J. N. What’s Wrong with My Mouse? Behavioral Phenotyping of Transgenic and Knockout Mice (Wiley-Liss, 2000).

  121. Guettier, J. et al. A chemical-genetic approach to study G protein regulation of beta cell function in vivo. Proc. Natl Acad. Sci. USA 106, 19197–19202 (2009).

    Article  ADS  Google Scholar 

  122. Li, J. H. et al. A novel experimental strategy to assess the metabolic effects of selective activation of a G(q)-coupled receptor in hepatocytes in vivo. Endocrinology 154, 3539–3551 (2013).

    Article  Google Scholar 

  123. Kaiser, E. et al. DREADD technology reveals major impact of Gq signalling on cardiac electrophysiology. Cardiovasc. Res. 115, 1052–1066 (2019).

    Article  Google Scholar 

  124. Akhmedov, D. et al. Gs-DREADD knock-in mice for tissue-specific, temporal stimulation of cyclic AMP signaling. Mol. Cell. Biol. 37, e00584-16 (2017).

    Article  Google Scholar 

  125. Niwa, H., Yamamura, K. & Miyazaki, J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193–199 (1991).

    Article  Google Scholar 

  126. Gong, Y. et al. Hyperaminoacidemia induces pancreatic α cell proliferation via synergism between the mTORC1 and CaSR-Gq signaling pathways. Nat. Commun. 14, 235 (2023).

    Article  ADS  Google Scholar 

  127. Guettier, J.-M. et al. A chemical-genetic approach to study G protein regulation of beta cell function in vivo. Proc. Natl Acad. Sci. USA 106, 19197–19202 (2009).

    Article  ADS  Google Scholar 

  128. Li, J. H. et al. A novel experimental strategy to assess the metabolic effects of selective activation of a Gq-coupled receptor in hepatocytes in vivo. Endocrinology 154, 3539–3551 (2013).

    Article  Google Scholar 

  129. Bone, D. B. J. et al. Skeletal muscle-specific activation of Gq signaling maintains glucose homeostasis. Diabetes 68, 1341–1352 (2019).

    Article  Google Scholar 

  130. Soares, A. G. et al. Stimulation of the epithelial Na(+) channel in renal principal cells by Gs-coupled designer receptors exclusively activated by designer drugs. Front. Physiol. 12, 725782 (2021).

    Article  Google Scholar 

  131. Mironova, E., Suliman, F. & Stockand, J. D. Renal Na(+) excretion consequent to pharmacogenetic activation of G(q)-DREADD in principal cells. Am. J. Physiol. Ren. Physiol. 316, F758–F767 (2019).

    Article  Google Scholar 

  132. Taylor, M. J. et al. Chemogenetic activation of adrenocortical Gq signaling causes hyperaldosteronism and disrupts functional zonation. J. Clin. Invest. 130, 83–93 (2020).

    Article  Google Scholar 

  133. Wan, J. et al. Pancreas-specific CHRM3 activation causes pancreatitis in mice. JCI Insight 6, e132585 (2021).

    Article  Google Scholar 

  134. Makhmutova, M. et al. Pancreatic beta-cells communicate with vagal sensory neurons. Gastroenterology 160, 875–888.e11 (2021).

    Article  Google Scholar 

  135. Rossi, M. et al. Hepatic Gi signaling regulates whole-body glucose homeostasis. J. Clin. Invest. 128, 746–759 (2018).

    Article  Google Scholar 

  136. Kimura, T. et al. Adipocyte G(q) signaling is a regulator of glucose and lipid homeostasis in mice. Nat. Commun. 13, 1652 (2022).

    Article  ADS  Google Scholar 

  137. Jain, S. et al. Chronic activation of a designer G(q)-coupled receptor improves beta cell function. J. Clin. Invest. 123, 1750–1762 (2013).

    Article  Google Scholar 

  138. Wood, C. M. et al. Chemogenetics identifies separate area 25 brain circuits involved in anhedonia and anxiety in marmosets. Sci. Transl. Med. 15, eade1779 (2023).

    Article  Google Scholar 

  139. Roseboom, P. H. et al. Evidence in primates supporting the use of chemogenetics for the treatment of human refractory neuropsychiatric disorders. Mol. Ther. 29, 3484–3497 (2021).

    Article  Google Scholar 

  140. Poth, K. M., Texakalidis, P. & Boulis, N. M. Chemogenetics: beyond lesions and electrodes. Neurosurgery 89, nyab147 (2021).

    Article  Google Scholar 

  141. Sternson, S. M. & Bleakman, D. Chemogenetics: drug-controlled gene therapies for neural circuit disorders. Cell Gene Ther. Insights 6, 1079–1094 (2020).

    Article  Google Scholar 

  142. Bowes, J. et al. Reducing safety-related drug attrition: the use of in vitro pharmacological profiling. Nat. Rev. Drug Discov. 11, 909–922 (2012).

    Article  Google Scholar 

  143. Conklin, B. R. et al. Engineering GPCR signaling pathways with RASSLs. Nat. Methods 5, 673–678 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

Work in the Roth laboratory is supported by grants from the NIH. J.W. was supported by funds from the NIDDK Intramural Research Program (Bethesda, MD, USA). This work was supported by the National Research Foundation of Korea grant funded by the Korea government (MSIT) (No. 2022R1C1C1008786). T.M. was supported by the Japan Agency for Medical Research and Development (JP18dm0307007).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (H.J.K., T.M., J.W. and B.L.R.); Experimentation (H.J.K., T.M., J.W. and B.L.R.); Results (H.J.K., T.M., J.W. and B.L.R.); Applications (H.J.K., T.M., J.W. and B.L.R.); Reproducibility and data deposition (H.J.K., T.M., J.W. and B.L.R.); Limitations and optimizations (H.J.K., T.M., J.W. and B.L.R.); Outlook (H.J.K., T.M., J.W. and B.L.R.); Overview of the Primer (B.L.R.).

Corresponding authors

Correspondence to Hye Jin Kang or Bryan L. Roth.

Ethics declarations

Competing interests

B.L.R. is an SAB member of Onsero, Epiodyne, Escient and Septerna Pharmaceuticals and is listed as an inventor on patents related to the TRUPATH technology. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks S. Kiyonaka, J. Neumaier, C. Price and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

DiscoveRX: https://www.discoverx.com/home

Eurofins: https://www.eurofinsdiscovery.com/

Similarity Ensemble Approach: https://sea.bkslab.org

Glossary

Chemogenetic actuator

The ligand activating the designer receptor exclusively activated by designer drug.

Chemogenetic transducer

The receptor construct.

Codon optimization

Experimental approaches designed to improve the codon composition of a recombinant gene without altering the amino acid sequence.

Kinome

A collection of entire kinases.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, H.J., Minamimoto, T., Wess, J. et al. Chemogenetics for cell-type-specific modulation of signalling and neuronal activity. Nat Rev Methods Primers 3, 93 (2023). https://doi.org/10.1038/s43586-023-00276-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-023-00276-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing