Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging mechanistic insights into the regulation of specialized metabolism in plants

Abstract

Plants biosynthesize a broad range of natural products through specialized and species-specific metabolic pathways that are fuelled by core metabolism, together forming a metabolic network. Specialized metabolites have important roles in development and adaptation to external cues, and they also have invaluable pharmacological properties. A growing body of evidence has highlighted the impact of translational, transcriptional, epigenetic and chromatin-based regulation and evolution of specialized metabolism genes and metabolic networks. Here we review the forefront of this research field and extrapolate to medicinal plants that synthetize rare molecules. We also discuss how this new knowledge could help in improving strategies to produce useful plant-derived pharmaceuticals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of specialized metabolism gene regulation and evolution.
Fig. 2: Chromatin architecture regulates thalianol accumulation in Arabidopsis roots.
Fig. 3: Transcriptional repressor decoying and promoter swapping for BGC activation.

Similar content being viewed by others

References

  1. Carrington, Y. et al. Evolution of a secondary metabolic pathway from primary metabolism: shikimate and quinate biosynthesis in plants. Plant J. 95, 823–833 (2018).

    Article  CAS  Google Scholar 

  2. Barra, L., Awakawa, T., Shirai, K., Hu, Z. & Bashiri, G. β-NAD as a building block in natural product biosynthesis. Nature 600, 754–758 (2021).

    Article  CAS  Google Scholar 

  3. Garagounis, C., Delkis, N. & Papadopoulou, K. K. Unraveling the roles of plant specialized metabolites: using synthetic biology to design molecular biosensors. N. Phytol. 231, 1338–1352 (2021).

    Article  Google Scholar 

  4. Wurtzel, E. T. & Kutchan, T. M. Plant metabolism, the diverse chemistry set of the future. Science 353, 1232–1236 (2016).

    Article  CAS  Google Scholar 

  5. Kulagina, N., Méteignier, L., Papon, N., O’Connor, S. E. & Courdavault, V. More than a Catharanthus plant: a multicellular and pluri-organelle alkaloid-producing factory. Curr. Opin. Plant Biol. 67, 102200 (2022).

    Article  Google Scholar 

  6. Ozber, N. & Facchini, P. J. Phloem-specific localization of benzylisoquinoline alkaloid metabolism in opium poppy. J. Plant Physiol. 271, 153641 (2022).

    Article  CAS  Google Scholar 

  7. Nielsen, J. Systems biology of metabolism. Annu. Rev. Biochem. 86, 245–275 (2017).

    Article  CAS  Google Scholar 

  8. Lacchini, E. & Goossens, A. Combinatorial control of plant specialized metabolism: mechanisms, functions, and consequences. Annu. Rev. Cell Dev. Biol. 36, 291–313 (2020).

    Article  CAS  Google Scholar 

  9. Colinas, M. & Goossens, A. Combinatorial transcriptional control of plant specialized metabolism. Trends Plant Sci. 23, 324–336 (2018).

    Article  CAS  Google Scholar 

  10. Zhang, Y. & Fernie, A. R. Metabolons, enzyme–enzyme assemblies that mediate substrate channeling, and their roles in plant metabolism. Plant Commun. 2, 100081 (2021).

    Article  CAS  Google Scholar 

  11. Zhang, Y. et al. A moonlighting role for enzymes of glycolysis in the co-localization of mitochondria and chloroplasts. Nat. Commun. 11, 4509 (2020).

    Article  Google Scholar 

  12. Mucha, S. et al. The formation of a camalexin-biosynthetic metabolon. Plant Cell 31, 2697–2710 (2019).

    CAS  Google Scholar 

  13. Gaudinier, A. et al. Transcriptional regulation of nitrogen-associated metabolism and growth. Nature 563, 259–264 (2018).

    Article  CAS  Google Scholar 

  14. Tang, M. et al. A genome‐scale TF–DNA interaction network of transcriptional regulation of Arabidopsis primary and specialized metabolism. Mol. Syst. Biol. 17, e10625 (2021).

    Article  CAS  Google Scholar 

  15. Ihmels, J., Levy, R. & Barkai, N. Principles of transcriptional control in the metabolic network of Saccharomyces cerevisiae. Nat. Biotechnol. 22, 86–92 (2004).

    Article  CAS  Google Scholar 

  16. Xiong, Y. et al. Glucose–TOR signalling reprograms the transcriptome and activates meristems. Nature 496, 181–186 (2013).

    Article  CAS  Google Scholar 

  17. Dong, Y. et al. Sulfur availability regulates plant growth via glucose–TOR signaling. Nat. Commun. 8, 1174 (2017).

    Article  Google Scholar 

  18. Salazar-Díaz, K. et al. TOR senses and regulates spermidine metabolism during seedling establishment and growth in maize and Arabidopsis. iScience 24, 103260 (2021).

    Article  Google Scholar 

  19. Meteignier, L.-V. et al. Translatome analysis of an NB–LRR immune response identifies important contributors to plant immunity in Arabidopsis. J. Exp. Bot. 68, 2333–2344 (2017).

    Article  CAS  Google Scholar 

  20. De Vleesschauwer, D. et al. Target of rapamycin signaling orchestrates growth–defense trade-offs in plants. N. Phytol. 217, 305–319 (2017).

    Article  Google Scholar 

  21. Groth, M. et al. MTHFD1 controls DNA methylation in Arabidopsis. Nat. Commun. 7, 11640 (2016).

    Article  CAS  Google Scholar 

  22. Samo, N., Ebert, A., Kopka, J. & Mozgová, I. Plant chromatin, metabolism and development—an intricate crosstalk. Curr. Opin. Plant Biol. 61, 102002 (2021).

    Article  CAS  Google Scholar 

  23. Escaray, F., Felipo-Benavent, A. & Vera, P. Linking plant metabolism and immunity through methionine biosynthesis. Mol. Plant 15, 6–8 (2022).

    Article  CAS  Google Scholar 

  24. González, B. & Vera, P. Folate metabolism interferes with plant immunity through 1C methionine synthase-directed genome-wide DNA methylation enhancement. Mol. Plant 12, 1227–1242 (2019).

    Article  Google Scholar 

  25. Zhai, K. et al. NLRs guard metabolism to coordinate pattern- and effector-triggered immunity. Nature 601, 245–251 (2021).

    Article  Google Scholar 

  26. Méteignier, L.-V. et al. Topoisomerase VI participates in an insulator-like function that prevents H3K9me2 spreading. Proc. Natl Acad. Sci. USA 119, e2001290119 (2022).

    Article  Google Scholar 

  27. Latrasse, D. et al. Dual function of MIPS1 as a metabolic enzyme and transcriptional regulator. Nucleic Acids Res. 41, 2907–2917 (2013).

    Article  CAS  Google Scholar 

  28. Meng, J. et al. METHIONINE ADENOSYLTRANSFERASE4 mediates DNA and histone methylation. Plant Physiol. 177, 652–670 (2018).

    Article  CAS  Google Scholar 

  29. Venturelli, S. et al. Plants release precursors of histone deacetylase inhibitors to suppress growth of competitors. Plant Cell 27, 3175–3189 (2015).

    Article  CAS  Google Scholar 

  30. Zhao, K., Kong, D., Jin, B., Smolke, C. D. & Rhee, S. Y. A novel bivalent chromatin associates with rapid induction of camalexin biosynthesis genes in response to a pathogen signal in Arabidopsis. eLife 10, e69508 (2021).

  31. Catoni, M. & Cortijo, S. in Advances in Botanical Research Vol. 88 (eds Mirouze, M. et al.) 87–116 (Elsevier, 2018).

  32. Kooke, R. et al. Epigenetic mapping of the Arabidopsis metabolome reveals mediators of the epigenotype–phenotype map. Genome Res. 29, 96–106 (2019).

    Article  CAS  Google Scholar 

  33. Shirai, K. et al. Positive selective sweeps of epigenetic mutations regulating specialized metabolites in plants. Genome Res. 31, 1060–1068 (2021).

    Article  Google Scholar 

  34. de Bernonville, T. D. et al. Developmental methylome of the medicinal plant Catharanthus roseus unravels the tissue-specific control of the monoterpene indole alkaloid pathway by DNA methylation. Int. J. Mol. Sci. 21, 6028 (2020).

    Article  Google Scholar 

  35. Zhan, C. et al. Plant metabolic gene clusters in the multi-omics era. Trends Plant Sci. 27, 981–1001 (2022).

    Article  CAS  Google Scholar 

  36. Zhan, C. et al. Selection of a subspecies-specific diterpene gene cluster implicated in rice disease resistance. Nat. Plants 6, 1447–1454 (2020).

    Article  CAS  Google Scholar 

  37. Polturak, G. et al. Pathogen-induced biosynthetic pathways encode defense-related molecules in bread wheat. Proc. Natl Acad. Sci. USA 119, e2123299119 (2022).

    Article  CAS  Google Scholar 

  38. Shen, S. et al. An Oryza-specific hydroxycinnamoyl tyramine gene cluster contributes to enhanced disease resistance. Sci. Bull. 66, 2369–2380 (2021).

    Article  CAS  Google Scholar 

  39. Chen, W. et al. Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. Nat. Genet. 46, 714–721 (2014).

    Article  CAS  Google Scholar 

  40. Fang, H. et al. A monocot-specific hydroxycinnamoylputrescine gene cluster contributes to immunity and cell death in rice. Sci. Bull. 66, 2381–2393 (2021).

    Article  CAS  Google Scholar 

  41. Grützner, R. et al. High-efficiency genome editing in plants mediated by a Cas9 gene containing multiple introns. Plant Commun. 2, 100135 (2021).

    Article  Google Scholar 

  42. Gardiner, J., Ghoshal, B., Wang, M. & Jacobsen, S. E. CRISPR–Cas-mediated transcriptional control and epi-mutagenesis. Plant Physiol. 188, 1811–1824 (2022).

    Article  CAS  Google Scholar 

  43. Smit, S. J. & Lichman, B. R. Plant biosynthetic gene clusters in the context of metabolic evolution. Nat. Prod. Rep. 39, 1465–1482 (2022).

    Article  CAS  Google Scholar 

  44. Zhou, X. & Liu, Z. Unlocking plant metabolic diversity: a (pan)-genomic view. Plant Commun. 3, 100300 (2022).

    Article  CAS  Google Scholar 

  45. Laverty, K. U. et al. A physical and genetic map of Cannabis sativa identifies extensive rearrangements at the THC/CBD acid synthase loci. Genome Res. 29, 146–156 (2019).

    Article  CAS  Google Scholar 

  46. Conart, C. et al. Duplication and specialization of NUDX1 in Rosaceae led to geraniol production in rose petals. Mol. Biol. Evol. 39, msac002 (2022).

  47. Kominek, J. et al. Eukaryotic acquisition of a bacterial operon. Cell 176, 1356–1366.e10 (2019).

    Article  CAS  Google Scholar 

  48. Xia, J. et al. Whitefly hijacks a plant detoxification gene that neutralizes plant toxins. Cell 184, 1693–1705.e17 (2021).

    Article  CAS  Google Scholar 

  49. Wu, D., Jiang, B., Ye, C.-Y., Timko, M. P. & Fan, L. Horizontal transfer and evolution of the biosynthetic gene cluster for benzoxazinoids in plants. Plant Commun. 3, 100320 (2022).

    Article  CAS  Google Scholar 

  50. Barco, B., Kim, Y. & Clay, N. K. Expansion of a core regulon by transposable elements promotes Arabidopsis chemical diversity and pathogen defense. Nat. Commun. 10, 3444 (2019).

    Article  Google Scholar 

  51. Schweizer, F. et al. An engineered combinatorial module of transcription factors boosts production of monoterpenoid indole alkaloids in Catharanthus roseus. Metab. Eng. 48, 150–162 (2018).

    Article  CAS  Google Scholar 

  52. Brophy, J. A. N. et al. Synthetic genetic circuits as a means of reprogramming plant roots. Science 377, 747–751 (2022).

    Article  CAS  Google Scholar 

  53. Bharadwaj, R., Kumar, S. R., Sharma, A. & Sathishkumar, R. Plant metabolic gene clusters: evolution, organization, and their applications in synthetic biology. Front. Plant Sci. 12, 697318 (2021).

  54. Guo, L. et al. The opium poppy genome and morphinan production. Science 362, 343–347 (2018).

    Article  CAS  Google Scholar 

  55. Liu, Z. et al. Formation and diversification of a paradigm biosynthetic gene cluster in plants. Nat. Commun. 11, 5354 (2020).

  56. Zhao, S. et al. Plant HP1 protein ADCP1 links multivalent H3K9 methylation readout to heterochromatin formation. Cell Res. 29, 54–66 (2019).

    Article  CAS  Google Scholar 

  57. Zhong, Z. et al. DNA methylation-linked chromatin accessibility affects genomic architecture in Arabidopsis. Proc. Natl Acad. Sci. USA 118, e2023347118 (2021).

    Article  CAS  Google Scholar 

  58. Dong, P. et al. 3D chromatin architecture of large plant genomes determined by local A/B compartments. Mol. Plant 10, 1497–1509 (2017).

    Article  CAS  Google Scholar 

  59. Yang, X. et al. Three chromosome-scale Papaver genomes reveal punctuated patchwork evolution of the morphinan and noscapine biosynthesis pathway. Nat. Commun. 12, 6030 (2021).

    Article  CAS  Google Scholar 

  60. Nützmann, H. W. et al. Active and repressed biosynthetic gene clusters have spatially distinct chromosome states. Proc. Natl Acad. Sci. USA 117, 13800–13809 (2020).

    Article  Google Scholar 

  61. Ariel, F. et al. R-loop mediated trans action of the APOLO long noncoding RNA. Mol. Cell 77, 1055–1065.e4 (2020).

    Article  CAS  Google Scholar 

  62. Roulé, T. et al. The lncRNA MARS modulates the epigenetic reprogramming of the marneral cluster in response to ABA. Mol. Plant 15, 840–856 (2022).

    Article  Google Scholar 

  63. Li, Y. et al. Subtelomeric assembly of a multi-gene pathway for antimicrobial defense compounds in cereals. Nat. Commun. 12, 2563 (2021).

    Article  Google Scholar 

  64. Choi, J. Y. et al. Natural variation in plant telomere length is associated with flowering time. Plant Cell 33, 1118–1134 (2021).

    Article  Google Scholar 

  65. Farrell, C. et al. A complex network of interactions governs DNA methylation at telomeric regions. Nucleic Acids Res. 50, 1449–1464 (2022).

    Article  CAS  Google Scholar 

  66. Campitelli, B. E. et al. Plasticity, pleiotropy and fitness trade‐offs in Arabidopsis genotypes with different telomere lengths. N. Phytol. 233, 1939–1952 (2022).

    Article  CAS  Google Scholar 

  67. Wegel, E., Koumproglou, R., Shaw, P. & Osbourn, A. Cell type-specific chromatin decondensation of a metabolic gene cluster in oats. Plant Cell 21, 3926–3936 (2009).

    Article  CAS  Google Scholar 

  68. Wang, J. et al. Manipulation of TAD reorganization by chemical-dependent genome linking. STAR Protoc. 2, 100799 (2021).

    Article  CAS  Google Scholar 

  69. Winkler, J. et al. Visualizing protein–protein interactions in plants by rapamycin-dependent delocalization. Plant Cell 33, 1101–1117 (2021).

    Article  Google Scholar 

  70. Lioy, V. S. et al. Dynamics of the compartmentalized Streptomyces chromosome during metabolic differentiation. Nat. Commun. 12, 5221 (2021).

    Article  CAS  Google Scholar 

  71. Won, T. H. et al. Copper starvation induces antimicrobial isocyanide integrated into two distinct biosynthetic pathways in fungi. Nat. Commun. 13, 4828 (2022).

    Article  CAS  Google Scholar 

  72. Wang, B., Guo, F., Dong, S. H. & Zhao, H. Activation of silent biosynthetic gene clusters using transcription factor decoys. Nat. Chem. Biol. 15, 111–114 (2019).

    Article  CAS  Google Scholar 

  73. Park, J., Yim, S. S. & Wang, H. H. High-throughput transcriptional characterization of regulatory sequences from bacterial biosynthetic gene clusters. ACS Synth. Biol. 10, 1859–1873 (2021).

    Article  CAS  Google Scholar 

  74. Zhang, M. M. et al. CRISPR–Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters. Nat. Chem. Biol. 13, 607–609 (2017).

    Article  CAS  Google Scholar 

  75. Gacek-Matthews, A. et al. KdmB, a Jumonji histone H3 demethylase, regulates genome-wide H3K4 trimethylation and is required for normal induction of secondary metabolism in Aspergillus nidulans. PLoS Genet. 12, e1006222 (2016).

  76. Keller, N. P. Fungal secondary metabolism: regulation, function and drug discovery. Nat. Rev. Microbiol. 17, 167–180 (2019).

    Article  CAS  Google Scholar 

  77. Greco, C., Pfannenstiel, B. T., Liu, J. C. & Keller, N. P. Depsipeptide aspergillicins revealed by chromatin reader protein deletion. ACS Chem. Biol. 14, 1121–1128 (2019).

    Article  CAS  Google Scholar 

  78. Schüller, A. et al. A novel fungal gene regulation system based on inducible VPR–dCas9 and nucleosome map-guided sgRNA positioning. Appl. Microbiol. Biotechnol. 104, 9801–9822 (2020).

    Article  Google Scholar 

  79. Kumar, S., Singh, B. & Singh, R. Catharanthus roseus (L.) G. Don: a review of its ethnobotany, phytochemistry, ethnopharmacology and toxicities. J. Ethnopharmacol. 284, 114647 (2022).

    Article  CAS  Google Scholar 

  80. Rai, A. et al. Chromosome-level genome assembly of Ophiorrhiza pumila reveals the evolution of camptothecin biosynthesis. Nat. Commun. 12, 405 (2021).

  81. Kang, M. et al. A chromosome-level Camptotheca acuminata genome assembly provides insights into the evolutionary origin of camptothecin biosynthesis. Nat. Commun. 12, 3531 (2021).

  82. Zhao, X. et al. Chromosome-level assembly of the Neolamarckia cadamba genome provides insights into the evolution of cadambine biosynthesis. Plant J. 109, 891–908 (2022).

    Article  CAS  Google Scholar 

  83. Li, C. et al. Single-cell multi-omics enabled discovery of alkaloid biosynthetic pathway genes in the medical plant Catharanthus roseus. Preprint at bioRxiv https://doi.org/10.1101/2022.07.04.498697 (2022).

  84. Bonetti, A. et al. RADICL-seq identifies general and cell type–specific principles of genome-wide RNA-chromatin interactions. Nat. Commun. 11, 1018 (2020).

  85. Yamamoto, K. et al. The complexity of intercellular localisation of alkaloids revealed by single-cell metabolomics. N. Phytol. 224, 848–859 (2019).

    Article  CAS  Google Scholar 

  86. Tian, F., Yang, D. C., Meng, Y. Q., Jin, J. & Gao, G. PlantRegMap: charting functional regulatory maps in plants. Nucleic Acids Res. 48, D1104–D1113 (2020).

    CAS  Google Scholar 

  87. Gräwe, C., Stelloo, S., van Hout, F. A. H. & Vermeulen, M. RNA-centric methods: toward the interactome of specific RNA transcripts. Trends Biotechnol. 39, 890–900 (2021).

    Article  Google Scholar 

  88. Yaschenko, A. E., Fenech, M., Mazzoni-Putman, S., Alonso, J. M. & Stepanova, A. N. Deciphering the molecular basis of tissue-specific gene expression in plants: can synthetic biology help? Curr. Opin. Plant Biol. 68, 102241 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the ANR MIACYC project (grant no. ANR-20-CE43-0010), the ARD CVL Biopharmaceutical programme of the Région Centre-Val de Loire (ETOPOCentre project) and Le Studium Loire Valley Institute for Advanced Studies (consortium fellowship). A.O. acknowledges funding from the John Innes Foundation and the BBSRC Institute Strategic Programme Grant ‘Molecules from Nature—Products and Pathways’ (grant no. BBS/E/J/000PR9790). H.-W.N. acknowledges support from the University of Bath and the Royal Society (grant no. UF160138).

Author information

Authors and Affiliations

Authors

Contributions

L.-V.M., H.-W.N., N.P., A.O. and V.C. conceived the project and wrote the article.

Corresponding authors

Correspondence to Anne Osbourn or Vincent Courdavault.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Alisdair Fernie, Jing-Ke Weng and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Méteignier, LV., Nützmann, HW., Papon, N. et al. Emerging mechanistic insights into the regulation of specialized metabolism in plants. Nat. Plants 9, 22–30 (2023). https://doi.org/10.1038/s41477-022-01288-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-022-01288-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing