Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Animal Models

Sleep-disordered breathing, circulating exosomes, and insulin sensitivity in adipocytes

Abstract

Background:

Sleep-disordered-breathing (SDB), which is characterized by chronic intermittent hypoxia (IH) and sleep fragmentation (SF), is a prevalent condition that promotes metabolic dysfunction, particularly among patients suffering from obstructive hypoventilation syndrome (OHS). Exosomes are generated ubiquitously, are readily present in the circulation, and their cargo may exert substantial functional cellular alterations in both physiological and pathological conditions. However, the effects of plasma exosomes on adipocyte metabolism in patients with OHS or in mice subjected to IH or SF mimicking SDB are unclear.

Methods:

Exosomes from fasting morning plasma samples from obese adults with polysomnographically-confirmed OSA before and after 3 months of adherent CPAP therapy were assayed. In addition, C57BL/6 mice were randomly assigned to (1) sleep control (SC), (2) sleep fragmentation (SF), and (3) intermittent hypoxia (HI) for 6 weeks, and plasma exosomes were isolated. Equivalent exosome amounts were added to differentiated adipocytes in culture, after which insulin sensitivity was assessed using 0 nM and 5 nM insulin-induced pAKT/AKT expression changes by western blotting.

Results:

When plasma exosomes were co-cultured and internalized by human naive adipocytes, significant reductions emerged in Akt phosphorylation responses to insulin when compared to exosomes obtained after 24 months of adherent CPAP treatment (n = 24; p < 0.001), while no such changes occur in untreated patients (n = 8). In addition, OHS exosomes induced significant increases in adipocyte lipolysis that were attenuated after CPAP, but did not alter pre-adipocyte differentiation. Similarly, exosomes from SF- and IH-exposed mice induced attenuated p-AKT/total AKT responses to exogenous insulin and increased glycerol content in naive murine adipocytes, without altering pre-adipocyte differentiation.

Conclusions:

Using in vitro adipocyte-based functional reporter assays, alterations in plasma exosomal cargo occur in SDB, and appear to contribute to adipocyte metabolic dysfunction. Further exploration of exosomal miRNA signatures in either human subjects or animal models and their putative organ and cell targets appears warranted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Collaborators GBDO, Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, et al. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377:13–27.

    Article  Google Scholar 

  2. Ahima RS. Digging deeper into obesity. J Clin Invest. 2011;121:2076–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Castro-Anon O, Perez de Llano LA, De la Fuente Sanchez S, Golpe R, Mendez Marote L, Castro-Castro J, et al. Obesity-hypoventilation syndrome: increased risk of death over sleep apnea syndrome. PLoS ONE. 2015;10:e0117808.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Ramirez-Molina VR, Gomez-de-Terreros FJ, Barca-Duran J, Masa JF. Non-invasive positive airway pressure in obesity hypoventilation syndrome and chronic obstructive pulmonary disease: present and future perspectives. COPD. 2017;14:1–11.

    Article  Google Scholar 

  5. Petitti DB,Freedman D, Dietary sodium and blood pressure. N Engl J Med. 2001;344:1717

    PubMed  CAS  Google Scholar 

  6. Kessler R, Chaouat A, Schinkewitch P, Faller M, Casel S, Krieger J, et al. The obesity-hypoventilation syndrome revisited: a prospective study of 34 consecutive cases. Chest. 2001;120:369–76.

    Article  PubMed  CAS  Google Scholar 

  7. Mokhlesi B, Obesity hypoventilation syndrome: a state-of-the-art review. Respir Care. 2010;55:1347–62.

    PubMed  Google Scholar 

  8. Balachandran JS, Masa JF, Mokhlesi B. Obesity hypoventilation syndrome epidemiology and diagnosis. Sleep Med Clin. 2014;9:341–7.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Harada Y, Chihara Y, Azuma M, Murase K, Toyama Y, Yoshimura C, et al. Obesity hypoventilation syndrome in Japan and independent determinants of arterial carbon dioxide levels. Respirology. 2014;19:1233–40.

    Article  PubMed  Google Scholar 

  10. BaHammam AS. Prevalence, clinical characteristics, and predictors of obesity hypoventilation syndrome in a large sample of Saudi patients with obstructive sleep apnea. Saudi Med J. 2015;36:181–9.

    Article  PubMed  PubMed Central  Google Scholar 

  11. BaHammam AS, Pandi-Perumal SR, Piper A, Bahammam SA, Almeneessier AS, Olaish AH, et al. Gender differences in patients with obesity hypoventilation syndrome. J Sleep Res. 2016;25:445–53.

    Article  PubMed  Google Scholar 

  12. Masa JF, Corral J, Romero A, Caballero C, Teran-Santos J, Alonso-Alvarez ML, et al. Protective cardiovascular effect of sleep apnea severity in obesity hypoventilation syndrome. Chest. 2016;150:68–79.

    Article  PubMed  Google Scholar 

  13. Masa JF, Corral J, Romero A, Caballero C, Teran-Santos J, Alonso-Alvarez ML, et al. The Effect of supplemental oxygen in obesity hypoventilation syndrome. J Clin Sleep Med. 2016;12:1379–88.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pierce AM, Brown LK. Obesity hypoventilation syndrome: current theories of pathogenesis. Curr Opin Pulm Med. 2015;21:557–62.

    Article  PubMed  CAS  Google Scholar 

  15. Gileles-Hillel A, Kheirandish-Gozal L, Gozal D. Biological plausibility linking sleep apnoea and metabolic dysfunction. Nat Rev Endocrinol. 2016;12:290–8.

    Article  PubMed  CAS  Google Scholar 

  16. Koren D, Dumin M, Gozal D. Role of sleep quality in the metabolic syndrome. Diabetes Metab Syndr Obes. 2016;9:281–310.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Lopez-Jimenez MJ, Masa JF, Corral J, Teran J, Ordaz E, Troncoso MF, et al. Mid- and long-term efficacy of non-invasive ventilation in obesity hypoventilation syndrome: the pickwick’s study. Arch Bronconeumol. 2016;52:158–65.

    PubMed  Google Scholar 

  18. Borujeni MJS, Esfandiary E, Taheripak G, Codoner-Franch P, Alonso-Iglesias E, Mirzaei H. Molecular aspects of Diabetes Mellitus: Resistin, MicroRNA and Exosome. J Cell Biochem. 2017;119:1257–72.

    Article  CAS  Google Scholar 

  19. Hubal MJ, Nadler EP, Ferrante SC, Barberio MD, Suh JH, Wang J, et al. Circulating adipocyte-derived exosomal MicroRNAs associated with decreased insulin resistance after gastric bypass. Obesity. 2017;25:102–10.

    Article  PubMed  CAS  Google Scholar 

  20. Karolina DS, Tavintharan S, Armugam A, Sepramaniam S, Pek SL, Wong MT, et al. Circulating miRNA profiles in patients with metabolic syndrome. J Clin Endocrinol Metab. 2012;97:E2271–6.

    Article  PubMed  CAS  Google Scholar 

  21. Milbank E, Martinez MC, Andriantsitohaina R. Extracellular vesicles: pharmacological modulators of the peripheral and central signals governing obesity. Pharmacol Ther. 2016;157:65–83.

    Article  PubMed  CAS  Google Scholar 

  22. Santovito D, De Nardis V, Marcantonio P, Mandolini C, Paganelli C, Vitale E, et al. Plasma exosome microRNA profiling unravels a new potential modulator of adiponectin pathway in diabetes: effect of glycemic control. J Clin Endocrinol Metab. 2014;99:E1681–5.

    Article  PubMed  CAS  Google Scholar 

  23. Khalyfa A, Gozal D. Exosomal miRNAs as potential biomarkers of cardiovascular risk in children. J Transl Med. 2014;12:162.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Khalyfa A, Kheirandish-Gozal L, Gozal D. Circulating exosomes in obstructive sleep apnea as phenotypic biomarkers and mechanistic messengers of end-organ morbidity. Respir Physiol Neurobiol. 2017. pii: S1569-9048(17)30119-2. https://doi.org/10.1016/j.resp.2017.06.004. [Epub ahead of print] Review. PubMed PMID: 28676332; PubMed Central PMCID: PMC5748374.

  25. Khalyfa A, Kheirandish-Gozal L, Khalyfa AA, Philby MF, Alonso-Alvarez ML, Mohammadi M, et al. Circulating plasma extracellular microvesicle microRNA cargo and endothelial dysfunction in children with obstructive sleep apnea. Am J Respir Crit Care Med. 2016;194:1116–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Khalyfa A, Zhang C, Khalyfa AA, Foster GE, Beaudin AE, Andrade J, et al. Effect on Intermittent hypoxia on plasma exosomal micro rna signature and endothelial function in healthy adults. Sleep. 2016;39:2077–90.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Witwer KW, Buzás EI, Bemis LT, Bora A, Lässer C, Lötvall J, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2013;2. https://doi.org/10.3402/jev.v2i0.20360. eCollection 2013. PubMed PMID: 24009894; PubMed Central PMCID: PMC3760646.

  28. Colombo M, Raposo G, Thery C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–89.

    Article  PubMed  CAS  Google Scholar 

  29. Kourembanas S. Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy. Annu Rev Physiol. 2015;77:13–27.

    Article  PubMed  CAS  Google Scholar 

  30. Mullins RJ, Mustapic M, Goetzl EJ, Kapogiannis D. Exosomal biomarkers of brain insulin resistance associated with regional atrophy in Alzheimer’s disease. Hum Brain Mapp. 2017;38:1933–40.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kranendonk ME, de Kleijn DP, Kalkhoven E, Kanhai DA, Uiterwaal CS, van der Graaf Y, et al. Extracellular vesicle markers in relation to obesity and metabolic complications in patients with manifest cardiovascular disease. Cardiovasc Diabetol. 2014;13:37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Deng ZB, Poliakov A, Hardy RW, Clements R, Liu C, Liu Y, et al. Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance. Diabetes. 2009;58:2498–505.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Masa JF, Jimenez A, Duran J, Capote F, Monasterio C, Mayos M, et al. Alternative methods of titrating continuous positive airway pressure: a large multicenter study. Am J Respir Crit Care Med. 2004;170:1218–24.

    Article  PubMed  Google Scholar 

  34. Marin JM, Artal J, Martin T, Carrizo SJ, Andres M, Martin-Burriel I, et al. Epigenetics modifications and Subclinical Atherosclerosis in Obstructive Sleep Apnea: The EPIOSA study. BMC Pulm Med. 2014;14:114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Khalyfa A, Wang Y, Zhang SX, Qiao Z, Abdelkarim A, Gozal D. Sleep fragmentation in mice induces nicotinamide adenine dinucleotide phosphate oxidase 2-dependent mobilization, proliferation, and differentiation of adipocyte progenitors in visceral white adipose tissue. Sleep. 2014;37:999–1009.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Nair D, Zhang SX, Ramesh V, Hakim F, Kaushal N, Wang Y, et al. Sleep fragmentation induces cognitive deficits via nicotinamide adenine dinucleotide phosphate oxidase-dependent pathways in mouse. Am J Respir Crit Care Med. 2011;184:1305–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Ramesh V, Nair D, Zhang SX, Hakim F, Kaushal N, Kayali F, et al. Disrupted sleep without sleep curtailment induces sleepiness and cognitive dysfunction via the tumor necrosis factor-alpha pathway. J Neuroinflamm. 2012;9:91.

    CAS  Google Scholar 

  38. Khalyfa A, Qiao Z, Gileles-Hillel A, Khalyfa AA, Akbarpour M, Popko B, et al. Activation of integrated stress response and metabolic dysfunction in a murine model of sleep apnea. Am J Respir Cell Mol Biol. 2017;57:477–86.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.

    Article  PubMed  CAS  Google Scholar 

  40. Khalyfa A, Almendros I, Gileles-Hillel A, Akbarpour M, Trzepizur W, Mokhlesi B, et al. Circulating exosomes potentiate tumor malignant properties in a mouse model of chronic sleep fragmentation. Oncotarget. 2016;7:54676–90.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Almendros I, Khalyfa A, Trzepizur W, Gileles-Hillel A, Huang L, Akbarpour M, et al. Tumor cell malignant properties are enhanced by circulating exosomes in sleep apnea. Chest. 2016;150:1030–41.

    Article  PubMed  Google Scholar 

  42. Lotvall J, Hill AF, Hochberg F, Buzas EI, Di Vizio D, Gardiner C, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles. 2014;3:26913.

    Article  PubMed  Google Scholar 

  43. Carreras A, Zhang SX, Peris E, Qiao Z, Wang Y, Almendros I, et al. Effect of resveratrol on visceral white adipose tissue inflammation and insulin sensitivity in a mouse model of sleep apnea. Int J Obes. 2015;39:418–23.

    Article  CAS  Google Scholar 

  44. Zhang SX, Khalyfa A, Wang Y, Carreras A, Hakim F, Neel BA, et al. Sleep fragmentation promotes NADPH oxidase 2-mediated adipose tissue inflammation leading to insulin resistance in mice. Int J Obes. 2014;38:619–24.

    Article  CAS  Google Scholar 

  45. Gharib SA, Khalyfa A, Abdelkarim A, Bhushan B, Gozal D. Integrative miRNA-mRNA profiling of adipose tissue unravels transcriptional circuits induced by sleep fragmentation. PLoS ONE. 2012;7:e37669.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Poroyko VA, Carreras A, Khalyfa A, Khalyfa AA, Leone V, Peris E, et al. Chronic sleep disruption alters gut microbiota, induces systemic and adipose tissue inflammation and insulin resistance in mice. Sci Rep. 2016;6:35405.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Gozal D, Khalyfa A, Qiao Z, Akbarpour M, Maccari R, Ottana R. Protein-tyrosine phosphatase-1B mediates sleep fragmentation-induced insulin resistance and visceral adipose tissue inflammation in mice. Sleep. 2017;40. https://doi.org/10.1093/sleep/zsx111. PubMed PMID: 28651353.

  48. Murphy AM, Thomas A, Crinion SJ, Kent BD, Tambuwala MM, Fabre A, et al. Intermittent hypoxia in obstructive sleep apnoea mediates insulin resistance through adipose tissue inflammation. Eur Respir J. 2017;49. pii: 1601731. https://doi.org/10.1183/13993003.01731-2016. Print 2017Apr. PubMed PMID: 28424360.

  49. Gozal D, Gileles-Hillel A, Cortese R, Li Y, Almendros I, Qiao Z, et al. Visceral white adipose tissue after chronic intermittent and sustained hypoxia in mice. Am J Respir Cell Mol Biol. 2017;56:477–87.

    Article  PubMed  CAS  Google Scholar 

  50. Gileles-Hillel A, Almendros I, Khalyfa A, Nigdelioglu R, Qiao Z, Hamanaka RB, et al. Prolonged exposures to intermittent hypoxia promote visceral white adipose tissue inflammation in a murine model of severe sleep apnea: effect of normoxic recovery. Sleep. 2017;40. https://doi.org/10.1093/sleep/zsw074. PubMed PMID: 28329220.

  51. Almendros I, Gileles-Hillel A, Khalyfa A, Wang Y, Zhang SX, Carreras A, et al. Adipose tissue macrophage polarization by intermittent hypoxia in a mouse model of OSA: effect of tumor microenvironment. Cancer Lett. 2015;361:233–9.

    Article  PubMed  CAS  Google Scholar 

  52. Carreras A, Zhang SX, Almendros I, Wang Y, Peris E, Qiao Z, et al. Resveratrol attenuates intermittent hypoxia-induced macrophage migration to visceral white adipose tissue and insulin resistance in male mice. Endocrinology. 2015;156:437–43.

    Article  PubMed  CAS  Google Scholar 

  53. Roma-Rodrigues C, Fernandes AR, Baptista PV. Exosome in tumour microenvironment: overview of the crosstalk between normal and cancer cells. Biomed Res Int. 2014;2014:179486.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Masa JF, Corral J, Alonso ML, Ordax E, Troncoso MF, Gonzalez M, et al. Efficacy of different treatment alternatives for obesity hypoventilation syndrome. pickwick study. Am J Respir Crit Care Med. 2015;192:86–95.

    Article  PubMed  Google Scholar 

  55. Drager LF, Polotsky VY, O’Donnell CP, Cravo SL, Lorenzi-Filho G, Machado BH. Translational approaches to understanding metabolic dysfunction and cardiovascular consequences of obstructive sleep apnea. Am J Physiol Heart Circ Physiol. 2015;309:H1101–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Kent BD, McNicholas WT, Ryan S. Insulin resistance, glucose intolerance and diabetes mellitus in obstructive sleep apnoea. J Thorac Dis. 2015;7:1343–57.

    PubMed  PubMed Central  Google Scholar 

  57. Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y, et al. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc Biol. 2000;20:1595–9.

    Article  PubMed  CAS  Google Scholar 

  58. Lindsay RS, Funahashi T, Hanson RL, Matsuzawa Y, Tanaka S, Tataranni PA, et al. Adiponectin and development of type 2 diabetes in the Pima Indian population. Lancet. 2002;360:57–8.

    Article  PubMed  CAS  Google Scholar 

  59. Verges B, Guiu B, Cercueil JP, Duvillard L, Robin I, Buffier P, et al. Retinol-binding protein 4 is an independent factor associated with triglycerides and a determinant of very low-density lipoprotein-apolipoprotein B100 catabolism in type 2 diabetes mellitus. Arterioscler Thromb Vasc Biol. 2012;32:3050–7.

    Article  PubMed  CAS  Google Scholar 

  60. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200:373–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Mahat B, Chasse E, Mauger JF, Imbeault P. Effects of acute hypoxia on human adipose tissue lipoprotein lipase activity and lipolysis. J Transl Med. 2016;14:212.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Weiszenstein M, Shimoda LA, Koc M, Seda O, Polak J. Inhibition of Lipolysis Ameliorates Diabetic Phenotype in a Mouse Model of Obstructive Sleep Apnea. Am J Respir Cell Mol Biol. 2016;55:299–307.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Briancon-Marjollet A, Monneret D, Henri M, Hazane-Puch F, Pepin JL, Faure P, et al. Endothelin regulates intermittent hypoxia-induced lipolytic remodelling of adipose tissue and phosphorylation of hormone-sensitive lipase. J Physiol. 2016;594:1727–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Chopra S, Rathore A, Younas H, Pham LV, Gu C, Beselman A, et al. Obstructive sleep apnea dynamically increases nocturnal plasma free fatty acids, glucose, and cortisol during sleep. J Clin Endocrinol Metab. 2017;102:3172–81.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Smith JA, Leonardi T, Huang B, Iraci N, Vega B, Pluchino S. Extracellular vesicles and their synthetic analogues in aging and age-associated brain diseases. Biogerontology. 2015;16:147–85.

    Article  PubMed  CAS  Google Scholar 

  66. Phoonsawat W, Aoki-Yoshida A, Tsuruta T, Sonoyama K. Adiponectin is partially associated with exosomes in mouse serum. Biochem Biophys Res Commun. 2014;448:261–6.

    Article  PubMed  CAS  Google Scholar 

  67. Sano S, Izumi Y, Yamaguchi T, Yamazaki T, Tanaka M, Shiota M, et al. Lipid synthesis is promoted by hypoxic adipocyte-derived exosomes in 3T3-L1 cells. Biochem Biophys Res Commun. 2014;445:327–33.

    Article  PubMed  CAS  Google Scholar 

  68. Muller G. Let’s shift lipid burden--from large to small adipocytes. Eur J Pharmacol. 2011;656:1–4.

    Article  PubMed  CAS  Google Scholar 

  69. Kikuchi R, Tsuji T, Watanabe O, Yamaguchi K, Furukawa K, Nakamura H, et al. Hypercapnia accelerates adipogenesis: a novel role of high co2 in exacerbating obesity. Am J Respir Cell Mol Biol. 2017;57:570–80.

    Article  PubMed  CAS  Google Scholar 

  70. Goldbart AD, Row BW, Kheirandish-Gozal L, Cheng Y, Brittian KR, Gozal D. High fat/refined carbohydrate diet enhances the susceptibility to spatial learning deficits in rats exposed to intermittent hypoxia. Brain Res. 2006;1090:190–6.

    Article  PubMed  CAS  Google Scholar 

  71. Gozal D, Nair D, Goldbart AD. Physical activity attenuates intermittent hypoxia-induced spatial learning deficits and oxidative stress. Am J Respir Crit Care Med. 2010;182:104–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by National Institutes of Health grant HL130984 (to LKG), Instituto de Salud Carlos III (Fondo de Investigaciones Sanitarias, Ministerio de Sanidad y Consumo) grant PI050402, Spanish Respiratory Foundation 2005 (FEPAR) and Air Liquide Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelnaby Khalyfa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalyfa, A., Gozal, D., Masa, J.F. et al. Sleep-disordered breathing, circulating exosomes, and insulin sensitivity in adipocytes. Int J Obes 42, 1127–1139 (2018). https://doi.org/10.1038/s41366-018-0099-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-018-0099-9

This article is cited by

Search

Quick links