Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Maintenance of postmitotic neuronal cell identity

Abstract

The identity of specific cell types in the nervous system is defined by the expression of neuron type–specific gene batteries. How the expression of such batteries is initiated during nervous system development has been under intensive study over the past few decades. However, comparatively little is known about how gene batteries that define the terminally differentiated state of a neuron type are maintained throughout the life of an animal. Here we provide an overview of studies in invertebrate and vertebrate model systems that have carved out the general and not commonly appreciated principle that neuronal identity is maintained in postmitotic neurons by the sustained, and often autoregulated, expression of the same transcription factors that initiate terminal differentiation in a developing organism. Disruption of postmitotic maintenance mechanisms may result in neuropsychiatric and neurodegenerative conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Initiation and maintenance of neuronal identity.

Similar content being viewed by others

References

  1. Masland, R.H. Neuronal cell types. Curr. Biol. 14, R497–R500 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Nelson, S.B., Sugino, K. & Hempel, C.M. The problem of neuronal cell types: a physiological genomics approach. Trends Neurosci. 29, 339–345 (2006).

    CAS  PubMed  Google Scholar 

  3. Hobert, O., Carrera, I. & Stefanakis, N. The molecular and gene regulatory signature of a neuron. Trends Neurosci. 33, 435–445 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fishell, G. & Heintz, N. The neuron identity problem: form meets function. Neuron 80, 602–612 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Flavell, S.W. & Greenberg, M.E. Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system. Annu. Rev. Neurosci. 31, 563–590 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Spitzer, N.C. Activity-dependent neurotransmitter respecification. Nat. Rev. Neurosci. 13, 94–106 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Achim, K., Salminen, M. & Partanen, J. Mechanisms regulating GABAergic neuron development. Cell. Mol. Life Sci. 71, 1395–1415 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Holmberg, J. & Perlmann, T. Maintaining differentiated cellular identity. Nat. Rev. Genet. 13, 429–439 (2012).

    CAS  PubMed  Google Scholar 

  9. Hobert, O. Neurogenesis in the nematode Caenorhabditis elegans. WormBook (ed. The C. elegans Research Community) 10.1895/wormbook.1.12.2 〈http://www.wormbook.org/〉 (2010).

  10. Hobert, O. Regulation of terminal differentiation programs in the nervous system. Annu. Rev. Cell Dev. Biol. 27, 681–696 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Etchberger, J.F. et al. The molecular signature and cis-regulatory architecture of a C. elegans gustatory neuron. Genes Dev. 21, 1653–1674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kratsios, P., Stolfi, A., Levine, M. & Hobert, O. Coordinated regulation of cholinergic motor neuron traits through a conserved terminal selector gene. Nat. Neurosci. 15, 205–214 (2012).

    Article  CAS  Google Scholar 

  13. Duggan, A., Ma, C. & Chalfie, M. Regulation of touch receptor differentiation by the Caenorhabditis elegans mec-3 and unc-86 genes. Development 125, 4107–4119 (1998).

    CAS  PubMed  Google Scholar 

  14. Wenick, A.S. & Hobert, O. Genomic cis-regulatory architecture and trans-acting regulators of a single interneuron-specific gene battery in C. elegans. Dev. Cell 6, 757–770 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Eastman, C., Horvitz, H.R. & Jin, Y. Coordinated transcriptional regulation of the unc-25 glutamic acid decarboxylase and the unc-47 GABA vesicular transporter by the Caenorhabditis elegans UNC-30 homeodomain protein. J. Neurosci. 19, 6225–6234 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Doitsidou, M. et al. A combinatorial regulatory signature controls terminal differentiation of the dopaminergic nervous system in C. elegans. Genes Dev. 27, 1391–1405 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Etchberger, J.F., Flowers, E.B., Poole, R.J., Bashllari, E. & Hobert, O. Cis-regulatory mechanisms of left/right asymmetric neuron-subtype specification in C. elegans. Development 136, 147–160 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Serrano-Saiz, E. et al. Modular control of glutamatergic neuronal identity in C. elegans by distinct homeodomain proteins. Cell 155, 659–673 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Flames, N. & Hobert, O. Gene regulatory logic of dopamine neuron differentiation. Nature 458, 885–889 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chang, S., Johnston, R.J. Jr., Frokjaer-Jensen, C., Lockery, S. & Hobert, O. MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode. Nature 430, 785–789 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. O'Meara, M.M., Zhang, F. & Hobert, O. Maintenance of neuronal laterality in Caenorhabditis elegans through MYST histone acetyltransferase complex components LSY-12, LSY-13 and LIN-49. Genetics 186, 1497–1502 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jafari, S. et al. Combinatorial activation and repression by seven transcription factors specify Drosophila odorant receptor expression. PLoS Biol. 10, e1001280 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hsiao, H.Y., Jukam, D., Johnston, R. & Desplan, C. The neuronal transcription factor erect wing regulates specification and maintenance of Drosophila R8 photoreceptor subtypes. Dev. Biol. 381, 482–490 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Eade, K.T., Fancher, H.A., Ridyard, M.S. & Allan, D.W. Developmental transcriptional networks are required to maintain neuronal subtype identity in the mature nervous system. PLoS Genet. 8, e1002501 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Coppola, E., d'Autreaux, F., Rijli, F.M. & Brunet, J.F. Ongoing roles of Phox2 homeodomain transcription factors during neuronal differentiation. Development 137, 4211–4220 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Kadkhodaei, B. et al. Transcription factor Nurr1 maintains fiber integrity and nuclear-encoded mitochondrial gene expression in dopamine neurons. Proc. Natl. Acad. Sci. USA 110, 2360–2365 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kadkhodaei, B. et al. Nurr1 is required for maintenance of maturing and adult midbrain dopamine neurons. J. Neurosci. 29, 15923–15932 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schmidt, M. et al. The bHLH transcription factor Hand2 is essential for the maintenance of noradrenergic properties in differentiated sympathetic neurons. Dev. Biol. 329, 191–200 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Song, N.N. et al. Adult raphe-specific deletion of lmx1b leads to central serotonin deficiency. PLoS ONE 6, e15998 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhao, Z.Q. et al. Lmx1b is required for maintenance of central serotonergic neurons and mice lacking central serotonergic system exhibit normal locomotor activity. J. Neurosci. 26, 12781–12788 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zetterström, R.H. et al. Dopamine neuron agenesis in Nurr1-deficient mice. Science 276, 248–250 (1997).

    Article  PubMed  Google Scholar 

  32. Saucedo-Cardenas, O. et al. Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons. Proc. Natl. Acad. Sci. USA 95, 4013–4018 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hendricks, T.J. et al. Pet-1 ETS gene plays a critical role in 5-HT neuron development and is required for normal anxiety-like and aggressive behavior. Neuron 37, 233–247 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Ding, Y.Q. et al. Lmx1b is essential for the development of serotonergic neurons. Nat. Neurosci. 6, 933–938 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Cheng, L. et al. Lmx1b, Pet-1, and Nkx2.2 coordinately specify serotonergic neurotransmitter phenotype. J. Neurosci. 23, 9961–9967 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pattyn, A., Goridis, C. & Brunet, J.-F. Specification of the central noradrenergic phenotype by the homeodomain gene Phox2b. Mol. Cell. Neurosci. 15, 235–243 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Pattyn, A., Morin, X., Cremer, H., Goridis, C. & Brunet, J.-F. The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 399, 366–370 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Tsarovina, K. et al. Essential role of Gata transcription factors in sympathetic neuron development. Development 131, 4775–4786 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Hendershot, T.J. et al. Conditional deletion of Hand2 reveals critical functions in neurogenesis and cell type-specific gene expression for development of neural crest-derived noradrenergic sympathetic ganglion neurons. Dev. Biol. 319, 179–191 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu, C. et al. Pet-1 is required across different stages of life to regulate serotonergic function. Nat. Neurosci. 13, 1190–1198 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stott, S.R. et al. Foxa1 and foxa2 are required for the maintenance of dopaminergic properties in ventral midbrain neurons at late embryonic stages. J. Neurosci. 33, 8022–8034 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lopes, R., Verhey van Wijk, N., Neves, G. & Pachnis, V. Transcription factor LIM homeobox 7 (Lhx7) maintains subtype identity of cholinergic interneurons in the mammalian striatum. Proc. Natl. Acad. Sci. USA 109, 3119–3124 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sun, Y. et al. A central role for Islet1 in sensory neuron development linking sensory and spinal gene regulatory programs. Nat. Neurosci. 11, 1283–1293 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Magno, L. et al. The integrity of cholinergic basal forebrain neurons depends on expression of Nkx2-1. Eur. J. Neurosci. 34, 1767–1782 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  45. März, M., Seebeck, F. & Bartscherer, K. A Pitx transcription factor controls the establishment and maintenance of the serotonergic lineage in planarians. Development 140, 4499–4509 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, F. et al. The LIM and POU homeobox genes ttx-3 and unc-86 act as terminal selectors in distinct cholinergic and serotonergic neuron types. Development 141, 422–435 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xue, D., Finney, M., Ruvkun, G. & Chalfie, M. Regulation of the mec-3 gene by the C. elegans homeoproteins UNC-86 and MEC-3. EMBO J. 11, 4969–4979 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ptashne, M. The chemistry of regulation of genes and other things. J. Biol. Chem. 289, 5417–5435 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Way, J.C. & Chalfie, M. The mec-3 gene of Caenorhabditis elegans requires its own product for maintained expression and is expressed in three neuronal cell types. Genes Dev. 3, 1823–1833 (1989).

    Article  CAS  PubMed  Google Scholar 

  50. Sarafi-Reinach, T.R., Melkman, T., Hobert, O. & Sengupta, P. The lin-11 LIM homeobox gene specifies olfactory and chemosensory neuron fates in C. elegans. Development 128, 3269–3281 (2001).

    CAS  PubMed  Google Scholar 

  51. Bertrand, V. & Hobert, O. Linking asymmetric cell division to the terminal differentiation program of postmitotic neurons in C. elegans. Dev. Cell 16, 563–575 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cochella, L. et al. Two distinct types of neuronal asymmetries are controlled by the Caenorhabditis elegans zinc finger transcription factor die-1. Genes Dev. 28, 34–43 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Craven, S.E. et al. Gata2 specifies serotonergic neurons downstream of sonic hedgehog. Development 131, 1165–1173 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Krueger, K.C. & Deneris, E.S. Serotonergic transcription of human FEV reveals direct GATA factor interactions and fate of Pet-1–deficient serotonin neuron precursors. J. Neurosci. 28, 12748–12758 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ninkovic, J. et al. The transcription factor Pax6 regulates survival of dopaminergic olfactory bulb neurons via crystallin alphaA. Neuron 68, 682–694 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tsarovina, K. et al. The Gata3 transcription factor is required for the survival of embryonic and adult sympathetic neurons. J. Neurosci. 30, 10833–10843 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Boukhtouche, F. et al. RORalpha, a pivotal nuclear receptor for Purkinje neuron survival and differentiation: from development to ageing. Cerebellum 5, 97–104 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Chen, X.R. et al. Mature Purkinje cells require the retinoic acid-related orphan receptor-alpha (RORalpha) to maintain climbing fiber mono-innervation and other adult characteristics. J. Neurosci. 33, 9546–9562 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Koike, C. et al. Functional roles of Otx2 transcription factor in postnatal mouse retinal development. Mol. Cell. Biol. 27, 8318–8329 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Martinez-Morales, J.R., Signore, M., Acampora, D., Simeone, A. & Bovolenta, P. Otx genes are required for tissue specification in the developing eye. Development 128, 2019–2030 (2001).

    CAS  PubMed  Google Scholar 

  61. Béby, F. et al. Otx2 gene deletion in adult mouse retina induces rapid RPE dystrophy and slow photoreceptor degeneration. PLoS ONE 5, e11673 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Housset, M. et al. Loss of Otx2 in the adult retina disrupts retinal pigment epithelium function, causing photoreceptor degeneration. J. Neurosci. 33, 9890–9904 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mears, A.J. et al. Nrl is required for rod photoreceptor development. Nat. Genet. 29, 447–452 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Montana, C.L. et al. Reprogramming of adult rod photoreceptors prevents retinal degeneration. Proc. Natl. Acad. Sci. USA 110, 1732–1737 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Liu, A. & Joyner, A.L. Early anterior/posterior patterning of the midbrain and cerebellum. Annu. Rev. Neurosci. 24, 869–896 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Simon, H.H., Saueressig, H., Wurst, W., Goulding, M.D. & O'Leary, D.D. Fate of midbrain dopaminergic neurons controlled by the engrailed genes. J. Neurosci. 21, 3126–3134 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Albéri, L., Sgado, P. & Simon, H.H. Engrailed genes are cell-autonomously required to prevent apoptosis in mesencephalic dopaminergic neurons. Development 131, 3229–3236 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Simon, H.H., Thuret, S. & Alberi, L. Midbrain dopaminergic neurons: control of their cell fate by the engrailed transcription factors. Cell Tissue Res. 318, 53–61 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Alvarez-Fischer, D. et al. Engrailed protects mouse midbrain dopaminergic neurons against mitochondrial complex I insults. Nat. Neurosci. 14, 1260–1266 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Fox, S.R. & Deneris, E.S. Engrailed is required in maturing serotonin neurons to regulate the cytoarchitecture and survival of the dorsal raphe nucleus. J. Neurosci. 32, 7832–7842 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Li, J.Y., Lao, Z. & Joyner, A.L. Changing requirements for Gbx2 in development of the cerebellum and maintenance of the mid/hindbrain organizer. Neuron 36, 31–43 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Bovetti, S. et al. COUP-TFI controls activity-dependent tyrosine hydroxylase expression in adult dopaminergic olfactory bulb interneurons. Development 140, 4850–4859 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Kosaka, T., Kosaka, K., Hama, K., Wu, J.Y. & Nagatsu, I. Differential effect of functional olfactory deprivation on the GABAergic and catecholaminergic traits in the rat main olfactory bulb. Brain Res. 413, 197–203 (1987).

    Article  CAS  PubMed  Google Scholar 

  74. Baker, H., Morel, K., Stone, D.M. & Maruniak, J.A. Adult naris closure profoundly reduces tyrosine hydroxylase expression in mouse olfactory bulb. Brain Res. 614, 109–116 (1993).

    Article  CAS  PubMed  Google Scholar 

  75. Cave, J.W. & Baker, H. Dopamine systems in the forebrain. Adv. Exp. Med. Biol. 651, 15–35 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Demarque, M. & Spitzer, N.C. Activity-dependent expression of Lmx1b regulates specification of serotonergic neurons modulating swimming behavior. Neuron 67, 321–334 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dulcis, D., Jamshidi, P., Leutgeb, S. & Spitzer, N.C. Neurotransmitter switching in the adult brain regulates behavior. Science 340, 449–453 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Liu, N. & Baker, H. Activity-dependent Nurr1 and NGFI-B gene expression in adult mouse olfactory bulb. Neuroreport 10, 747–751 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Francis, N.J. & Landis, S.C. Cellular and molecular determinants of sympathetic neuron development. Annu. Rev. Neurosci. 22, 541–566 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Grant, M.P., Francis, N.J. & Landis, S.C. The role of acetylcholine in regulating secretory responsiveness in rat sweat glands. Mol. Cell. Neurosci. 6, 32–42 (1995).

    Article  CAS  PubMed  Google Scholar 

  81. Stanke, M. et al. Target-dependent specification of the neurotransmitter phenotype: cholinergic differentiation of sympathetic neurons is mediated in vivo by gp 130 signaling. Development 133, 141–150 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Apostolova, G., Loy, B., Dorn, R. & Dechant, G. The sympathetic neurotransmitter switch depends on the nuclear matrix protein Satb2. J. Neurosci. 30, 16356–16364 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Shilatifard, A. Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation. Curr. Opin. Cell Biol. 20, 341–348 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ptashne, M. Epigenetics: core misconcept. Proc. Natl. Acad. Sci. USA 110, 7101–7103 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Gold, D.A. et al. RORalpha coordinates reciprocal signaling in cerebellar development through sonic hedgehog and calcium-dependent pathways. Neuron 40, 1119–1131 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Serra, H.G. et al. RORalpha-mediated Purkinje cell development determines disease severity in adult SCA1 mice. Cell 127, 697–708 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Holmes, A., Yang, R.J., Lesch, K.P., Crawley, J.N. & Murphy, D.L. Mice lacking the serotonin transporter exhibit 5-HT(1A) receptor-mediated abnormalities in tests for anxiety-like behavior. Neuropsychopharmacology 28, 2077–2088 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Richardson-Jones, J.W. et al. Serotonin-1A autoreceptors are necessary and sufficient for the normal formation of circuits underlying innate anxiety. J. Neurosci. 31, 6008–6018 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Donaldson, Z.R. et al. Developmental effects of serotonin 1A autoreceptors on anxiety and social behavior. Neuropsychopharmacology 39, 291–302 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Veenstra-VanderWeele, J. & Blakely, R.D. Networking in autism: leveraging genetic, biomarker and model system findings in the search for new treatments. Neuropsychopharmacology 37, 196–212 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Waider, J., Araragi, N., Gutknecht, L. & Lesch, K.P. Tryptophan hydroxylase-2 (TPH2) in disorders of cognitive control and emotion regulation: a perspective. Psychoneuroendocrinology 36, 393–405 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Murphy, D.L. & Lesch, K.P. Targeting the murine serotonin transporter: insights into human neurobiology. Nat. Rev. Neurosci. 9, 85–96 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Deneris, E.S. & Wyler, S.C. Serotonergic transcriptional networks and potential importance to mental health. Nat. Neurosci. 15, 519–527 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Decressac, M., Volakakis, N., Bjorklund, A. & Perlmann, T. NURR1 in Parkinson disease–from pathogenesis to therapeutic potential. Nature reviews. Neurology 9, 629–636 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Volakakis, N. et al. NR4A orphan nuclear receptors as mediators of CREB-dependent neuroprotection. Proc. Natl. Acad. Sci. USA 107, 12317–12322 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Chu, Y. et al. Nurr1 in Parkinson's disease and related disorders. J. Comp. Neurol. 494, 495–514 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Le, W.D. et al. Mutations in NR4A2 associated with familial Parkinson disease. Nat. Genet. 33, 85–89 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Farrer, M. et al. Comparison of kindreds with parkinsonism and alpha-synuclein genomic multiplications. Ann. Neurol. 55, 174–179 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Decressac, M. et al. alpha-synuclein–induced down-regulation of Nurr1 disrupts GDNF signaling in nigral dopamine neurons. Sci. Transl. Med. 4, 163ra156 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Allan, P. Kratsios, N. Flames, P. Sengupta, S. Wyler and C. Spencer for comments before submission. We are indebted to M. Ptashne for his insightful comments and suggestions throughout the writing of this review. The authors are funded by the US National Institutes of Health (R01NS039996 and R01NS050266-03 to O.H. and RO1MH062723 and P50MH096972 to E.S.D.) and the Howard Hughes Medical Institute (O.H.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Evan S Deneris or Oliver Hobert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deneris, E., Hobert, O. Maintenance of postmitotic neuronal cell identity. Nat Neurosci 17, 899–907 (2014). https://doi.org/10.1038/nn.3731

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3731

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing