Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Proteasome subunits encoded in the MHC are not generally required for the processing of peptides bound by MHC class I molecules

Abstract

ANTIGEN processing provides major histocompatibility complex (MHC) class I molecules with short peptides, which they selectively bind and present to cytotoxic T lymphocytes1–4. The proteolytic system generating these peptides in the cytosol is unidentified, but their delivery into the endoplasmic reticulum is mediated by the TAP1–TAP2 transporter encoded in the MHC class II region5–9. Closely linked to TAP1 and TAP2 are genes for the LMP2 and LMP7 proteins10, which resemble components of proteasomes11–13, proteolytic complexes known to degrade cytosolic proteins14. This association has led to the common assumption that proteasomes function in this immunological pathway (discussed in ref. 15). We now show that the expression of stably assembled class I molecules and apparently normal peptide processing can be completely restored in the absence of LMP2 and LMP7 in the human lymphoblastoid cell line mutant 721.174 (refs 16, 17). The identity of LMP7 is directly confirmed by reconstitution of a proteasomal subunit after gene transfer. These results therefore dispute the hypothetical involvement of proteasomes in antigen processing, although a more subtle effect of LMP2 and LMP7 cannot be ruled out.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Townsend, A. R. M. et al. Cell 44, 959–968 (1986).

    Article  CAS  Google Scholar 

  2. Townsend, A. et al. Nature 340, 443–448 (1989).

    Article  ADS  CAS  Google Scholar 

  3. Falk, K., Rotzschke, O., Stevanovic, S., Jung, G. & Rammensee, H.-G. Nature 351, 290–296 (1991).

    Article  ADS  CAS  Google Scholar 

  4. Jardetzky, T. S., Lane, W. S., Robinson, R. A., Madden, D. R. & Wiley, D. C. Nature 353, 326–329 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Powis, S. J. et al. Nature 354, 528–531 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Spies, T. & DeMars, R. Nature 351, 323–324 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Attaya, M. et al. Nature 355, 647–649 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Kelly, A. et al. Nature 355, 641–644 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Spies, T. et al. Nature 355, 644–646 (1992).

    Article  ADS  CAS  Google Scholar 

  10. Monaco, J. J. & McDevitt, H. O. Proc. natn. Acad. Sci. U.S.A. 79, 3001–3005 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Brown, M. G., Driscoll, J. & Monaco, J. J. Nature 353, 355–357 (1991).

    Article  ADS  CAS  Google Scholar 

  12. Glynne, R. et al. Nature 353, 357–360 (1991).

    Article  ADS  CAS  Google Scholar 

  13. Martinez, C. K. & Monaco, J. J. Nature 353, 664–667 (1991).

    Article  ADS  CAS  Google Scholar 

  14. Goldberg, A. L. Eur. J. Biochem. 203, 9–23 (1992).

    Article  CAS  Google Scholar 

  15. Monaco, J. J. Immun. Today 13, 173–179 (1992).

    Article  CAS  Google Scholar 

  16. DeMars, R. et al. Proc. natn. Acad. Sci. U.S.A. 82, 8183–8187 (1985).

    Article  ADS  CAS  Google Scholar 

  17. Spies, T. et al. Nature 348, 744–747 (1990).

    Article  ADS  CAS  Google Scholar 

  18. Cerundolo, V. et al. Nature 345, 449–452 (1990).

    Article  ADS  CAS  Google Scholar 

  19. Kvist, S. & Hamann, U. Nature 348, 446–448 (1990).

    Article  ADS  CAS  Google Scholar 

  20. Wei, M. L. & Cresswell, P. Nature 356, 443–446 (1992).

    Article  ADS  CAS  Google Scholar 

  21. Yang, Y., Waters, J. B., Fruh, K. & Peterson, P. A. Proc. natn. Acad. Sci. U.S.A. 89, 4928–4932 (1992).

    Article  ADS  CAS  Google Scholar 

  22. Fruh, K. et al. J. biol. Chem. 267, 22131–22140 (1992).

    CAS  PubMed  Google Scholar 

  23. Long, E. O. et al. Hum. Immun. 31, 229–235 (1991).

    Article  CAS  Google Scholar 

  24. Kavathas, P., Bach, F. H. & DeMars, R. Proc. natn. Acad. Sci. U.S.A. 77, 4251–4259 (1980).

    Article  ADS  CAS  Google Scholar 

  25. Bahram, S., Arnold, D., Bresnahan, M., Strominger, J. L. & Spies, T. Proc. natn. Acad. Sci. U.S.A. 88, 10094–10098 (1991).

    Article  ADS  CAS  Google Scholar 

  26. Haynes, B. F., Reisner, E. G., Hemler, M. E., Strominger, J. L. & Eisenbarth, G. S. Hum. Immun. 4, 273–285 (1982).

    Article  CAS  Google Scholar 

  27. Ways, J. P., Rothbard, J. B. & Parham, P. J. Immun. 137, 217–222 (1986).

    CAS  Google Scholar 

  28. Brodsky, F. M., Bodmer, W. F. & Parham, P. Eur. J. Immun. 9, 536–545 (1979).

    Article  CAS  Google Scholar 

  29. Ljunggren, H.-G. et al. Nature 346, 478–480 (1990).

    Article  ADS  Google Scholar 

  30. Townsend, A. et al. Cell 62, 285–295 (1990).

    Article  CAS  Google Scholar 

  31. Elliott, T., Cerundolo, V., Elvin, J. & Townsend, A. Nature 351, 402–406 (1991).

    Article  ADS  CAS  Google Scholar 

  32. Cerundolo, V. et al. Eur. J. Immun. 21, 2069–2075 (1991).

    Article  CAS  Google Scholar 

  33. Driscoll, J. & Goldberg, A. L. Proc. natn. Acad. Sci. U.S.A. 86, 787–791 (1989).

    Article  ADS  CAS  Google Scholar 

  34. Coligan, J. E., Kruisbeek, A. M., Margulies, D. H., Shevach, E. & Strober, W. Current Protocols in Immunology (Wiley Interscience, New York, 1991).

    Google Scholar 

  35. Ozato, K. & Sachs, D. H. J. Immun. 126, 317–321 (1980).

    Google Scholar 

  36. Brodsky, F. M., Parham, P., Barnstable, C. J., Crumpton, M. J. & Bodmer, W. F. Immunol. Rev. 47, 3–61 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnold, D., Driscoll, J., Androlewicz, M. et al. Proteasome subunits encoded in the MHC are not generally required for the processing of peptides bound by MHC class I molecules. Nature 360, 171–174 (1992). https://doi.org/10.1038/360171a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/360171a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing