Skip to main content
Log in

Effects of photodeoxygenation on cell biology using dibenzothiophene S-oxide derivatives as O(3P)-precursors

  • Original Papers
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photodeoxygenation of dibenzothiophene S-oxide and its derivatives have been used to generate atomic oxygen [O(3P)] to examine its effect on proteins, nucleic acids, and lipids. The unique reactivity and selectivity of O(3P) have shown distinct oxidation products and outcomes in biomolecules and cell-based studies. To understand the scope of its global impact on the cell, we treated MDA-MB-231 cells with 2,8-diacetoxymethyldibenzothiophene S-oxide and UV-A light to produce O(3P) without targeting a specific cell organelle. Cellular responses to O(3P)-release were analyzed using cell viability and cell cycle phase determination assays. Cell death was observed when cells were treated with higher concentrations of sulfoxides and UV-A light. However, significant differences in cell cycle phases due to UV-A irradiation of the sulfoxide were not observed. We further performed RNA-Seq analysis to study the underlying biological processes at play, and while UV-irradiation itself influenced gene expression, there were 9 upregulated and 8 downregulated genes that could be attributed to photodeoxygenation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Data for VC_UV and VC_No UV have been presented in ref [25]

References

  1. Bucher, G., & Scaiano, J. C. (1994). Laser flash photolysis of pyridine N-Oxide: Kinetic studies of atomic oxygen [O(3P)] in solution. Journal of Physical Chemistry, 98(1), 12411–12413.

    Google Scholar 

  2. Lucien, E., & Greer, A. (2001). Electrophilic oxidant produced in the photodeoxygenation of 1,2-benzodiphenylene sulfoxide. Journal of Organic Chemistry, 66(13), 4576–4579. https://doi.org/10.1021/jo010009z

    Article  CAS  Google Scholar 

  3. Gregory, D. D., Wan, Z., & Jenks, W. S. (1997). Photodeoxygenation of dibenzothiophene sulfoxide: Evidence for a unimolecular S-O cleavage mechanism. Journal of the American Chemical Society, 119(1), 94–102. https://doi.org/10.1021/ja962975i

    Article  CAS  Google Scholar 

  4. Thomas, K. B., & Greer, A. (2003). Gauging the significance of atomic oxygen [O(3P] in sulfoxide photochemistry. A method for hydrocarbon oxidation. Journal of Organic Chemistry, 68(5), 1886–1891. https://doi.org/10.1021/jo0266487

    Article  CAS  Google Scholar 

  5. Omlid, S. M., Zhang, M., Isor, A., & McCulla, R. D. (2017). Thiol reactivity toward atomic oxygen generated during the photodeoxygenation of dibenzothiophene S-oxide. Journal of Organic Chemistry, 82(24), 13333–13341. https://doi.org/10.1021/acs.joc.7b02428

    Article  CAS  Google Scholar 

  6. Rastogi, R. P., Richa, K., Kumar, A., Tyagi, M. B., & Sinha, R. P. (2010). Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. Journal of Nucleic Acids, 2010, 592980. https://doi.org/10.4061/2010/592980

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Pattison, D. I., Rahmanto, A. S., & Davies, M. J. (2012). Photo-oxidation of proteins. Photochemical and Photobiological Sciences, 11, 38–53. https://doi.org/10.1039/c1pp05164d

    Article  PubMed  CAS  Google Scholar 

  8. Roy, S. (2017). Impact of UV radiation on genome stability and human health. Advances in Experimental Medicine and Biology, 996, 207–219. https://doi.org/10.1007/978-3-319-56017-5_17

    Article  PubMed  CAS  Google Scholar 

  9. Zheng, X., Baumann, S. M., Chintala, S. M., Galloway, K. D., Slaughter, J. B., & McCulla, R. D. (2016). Photodeoxygenation of dinaphthothiophene, benzophenanthrothiophene, and benzonaphthothiophene: S-oxides. Photochemical and Photobiological Sciences, 15(6), 791–800. https://doi.org/10.1039/c5pp00466g

    Article  PubMed  CAS  Google Scholar 

  10. Chintala, S. M., Petroff, J. T., Barnes, A., & McCulla, R. D. (2019). Photodeoxygenation of phenanthro[4,5-bcd]thiophene S-oxide, triphenyleno[1,12-bcd]thiophene S-oxide and perylo[1,12-bcd]thiophene S-oxide. Journal of Sulfur Chemistry, 40(5), 503–515. https://doi.org/10.1080/17415993.2019.1615065

    Article  CAS  Google Scholar 

  11. Korang, J., Grither, W. R., & McCulla, R. D. (2010). Photodeoxygenation of dibenzothiophene S-oxide derivatives in aqueous media. Journal of the American Chemical Society, 132(12), 4466–4476. https://doi.org/10.1021/ja100147b

    Article  PubMed  CAS  Google Scholar 

  12. Omlid, S., Isor, A., Sulkowski, K., Chintala, S., Petroff, J., & McCulla, R. (2018). Synthesis of aromatic disulfonic acids for water-soluble dibenzo­thiophene derivatives. Synthesis, 50(12), 2359–2366. https://doi.org/10.1055/s-0036-1591969

    Article  CAS  Google Scholar 

  13. Isor, A., Chartier, B. V., Abo, M., Currens, E. R., Weerapana, E., & McCulla, R. D. (2021). Identifying cysteine residues susceptible to oxidation by photoactivatable atomic oxygen precursors using a proteome-wide analysis. RSC Chemical Biology, 2(2), 577–591. https://doi.org/10.1039/d0cb00200c

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Zhang, M., Ravilious, G. E., Hicks, L. M., Jez, J. M., & McCulla, R. D. (2012). Redox switching of adenosine-5′-phosphosulfate kinase with photoactivatable atomic oxygen precursors. Journal of the American Chemical Society, 134(41), 16979–16982. https://doi.org/10.1021/ja3078522

    Article  PubMed  CAS  Google Scholar 

  15. Korang, J., Emahi, I., Grither, W. R., Baumann, S. M., Baum, D. A., & McCulla, R. D. (2013). Photoinduced DNA cleavage by atomic oxygen precursors in aqueous solutions. RSC Advances, 3(30), 12390–12397. https://doi.org/10.1039/c3ra41597j

    Article  CAS  Google Scholar 

  16. Bourdillon, M. T., Ford, B. A., Knulty, A. T., Gray, C. N., Zhang, M., Ford, D. A., & McCulla, R. D. (2014). Oxidation of plasmalogen, low-density lipoprotein and raw 264.7 cells by photoactivatable atomic oxygen precursors. Photochemistry and Photobiology, 90(2), 386–393. https://doi.org/10.1111/php.12201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Petroff, J. T., Isor, A., Chintala, S. M., Albert, C. J., Franke, J. D., Weinstein, D., Omlid, S. M., Arnatt, C. K., Ford, D. A., & McCulla, R. D. (2020). In vitro oxidations of low-density lipoprotein and RAW 264.7 cells with lipophilic O(3P)-precursors. RSC Advances, 10(44), 26553–26565. https://doi.org/10.1039/D0RA01517B

    Article  CAS  Google Scholar 

  18. Patrick, G. L. (2013). Prodrugs to improve membrane permeability. An introduction to medicinal chemistry (5th ed., p. 259). Oxford University Press.

    Google Scholar 

  19. Kalyanaraman, B., Cheng, G., Hardy, M., Ouari, O., Bennett, B., & Zielonka, J. (2018). Teaching the basics of reactive oxygen species and their relevance to cancer biology: Mitochondrial reactive oxygen species detection, redox signaling, and targeted therapies. Redox Biology, 15, 347–362. https://doi.org/10.1016/j.redox.2017.12.012

    Article  PubMed  CAS  Google Scholar 

  20. Fleury, C., Mignotte, B., & Vayssière, J. L. (2002). Mitochondrial reactive oxygen species in cell death signaling. Biochimie, 84(2–3), 131–141. https://doi.org/10.1016/S0300-9084(02)01369-X

    Article  PubMed  CAS  Google Scholar 

  21. Redza-Dutordoir, M., & Averill-Bates, D. A. (2016). Activation of apoptosis signalling pathways by reactive oxygen species. Biochimica et Biophysica Acta, 1863(12), 2977–2992. https://doi.org/10.1016/j.bbamcr.2016.09.012

    Article  PubMed  CAS  Google Scholar 

  22. Circu, M. L., & Aw, T. Y. (2010). Reactive oxygen species, cellular redox systems, and apoptosis. Free Radical Biology and Medicine, 48(6), 749–762. https://doi.org/10.1016/j.freeradbiomed.2009.12.022

    Article  PubMed  CAS  Google Scholar 

  23. Petroff, J. T., Skubic, K. N., Arnatt, C. K., & McCulla, R. D. (2018). Asymmetric dibenzothiophene sulfones as fluorescent nuclear stains. Journal of Organic Chemistry, 83(22), 14063–14068. https://doi.org/10.1021/acs.joc.8b01931

    Article  CAS  Google Scholar 

  24. Petroff, J. T., Grady, S., Arnatt, C. K., & McCulla, R. D. (2020). Dibenzothiophene sulfone derivatives as plasma membrane dyes. Photochemistry and Photobiology, 96(1), 67–73. https://doi.org/10.1111/php.13175

    Article  PubMed  CAS  Google Scholar 

  25. Isor, A., O’Dea, A. T., Petroff, J. T., Skubic, K. N., Grady, S. F., Arnatt, C. K., & McCulla, R. D. (2020). Synthesis of triphenylphosphonium dibenzothiophene S-oxide derivatives and their effect on cell cycle as photodeoxygenation-based cytotoxic agents. Bioorganic Chemistry, 105(2020), 104442–104454. https://doi.org/10.1016/j.bioorg.2020.104442

    Article  PubMed  CAS  Google Scholar 

  26. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J. Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., & Cardona, A. (2012). Fiji: An open-source platform for biological-image analysis. Nature Methods, 9(7), 676–682. https://doi.org/10.1038/nmeth.2019

    Article  PubMed  CAS  Google Scholar 

  27. Callegari, A. J., & Kelly, T. J. (2007). Shedding light on the DNA damage checkpoint. Cell Cycle, 6(6), 660–666. https://doi.org/10.4161/cc.6.6.3984

    Article  PubMed  CAS  Google Scholar 

  28. R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria URL http://www.R-projectorg/

  29. Kolde, R. (2015). Pheatmap : Pretty Heatmaps. R package version 1.0.12. http://cran.r-project.org/web/packages/pheatmap/index.html.

  30. Online Mendelian Inheritance in Man, OMIM. (2021). McKusick–Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, MD) and National Center for Biotechnology Information, National Library of Medicine (Bethesda, MD). https://omim.org/.

  31. Png, K. J., Halberg, N., Yoshida, M., & Tavazoie, S. F. (2012). A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature, 481(7380), 190–194. https://doi.org/10.1038/nature10661

    Article  CAS  Google Scholar 

  32. Polesskaya, A., Cuvellier, S., Naguibneva, I., Duquet, A., Moss, E. G., & Harel-Bellan, A. (2007). Lin-28 binds IGF-2 mRNA and participates in skeletal myogenesis by increasing translation efficiency. Genes and Development, 21(9), 1125–1138. https://doi.org/10.1101/gad.415007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., Nie, J., Jonsdottir, G. A., Ruotti, V., Stewart, R., Slukvin, I. I., & Thomson, J. A. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science, 318(5858), 1917–1920. https://doi.org/10.1126/science.1151526

    Article  PubMed  CAS  Google Scholar 

  34. Takefuji, M., Asano, H., Mori, K., Amano, M., Kato, K., Watanabe, T., Morita, Y., Katsumi, A., Itoh, T., Takenawa, T., Hirashiki, A., Izawa, H., Nagata, K., Hirayama, H., Takatsu, F., Naoe, T., Yokota, M., & Kaibuchi, K. (2010). Mutation of ARHGAP9 in patients with coronary spastic angina. Journal of Human Genetics, 55(1), 42–49. https://doi.org/10.1038/jhg.2009.120

    Article  PubMed  CAS  Google Scholar 

  35. Furukawa, Y., Kawasoe, T., Daigo, Y., Nishiwaki, T., Ishiguro, H., Takahashi, M., Kitayama, J., & Nakamura, Y. (2001). Isolation of a novel human gene, ARHGAP9, encoding a Rho-GTPase activating protein. Biochemical and Biophysical Research Communications, 284(3), 643–649. https://doi.org/10.1006/bbrc.2001.5022

    Article  PubMed  CAS  Google Scholar 

  36. Blighe, K., Rana, S., & Lewis, M. (2020). Enhanced volcano: Publication-ready volcano plots with enhanced colouring and labeling. version 1.12.0. https://github.com/kevinblighe/EnhancedVolcano.

  37. Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., Hornik, K., Hothorn, T., Huber, W., Iacus, S., Irizarry, R., Leisch, F., Li, C., Maechler, M., Rossini, A. J., … Zhang, J. (2004). Bioconductor: Open software development for computational biology and bioinformatics. Genome Biology, 5(10), R80. https://doi.org/10.1186/gb-2004-5-10-r80

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chen, J., Bardes, E. E., Aronow, B. J., & Jegga, A. G. (2009). ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Research, 37, W305–W311. https://doi.org/10.1093/nar/gkp427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Chen, J., Aronow, B. J., & Jegga, A. G. (2009). Disease candidate gene identification and prioritization using protein interaction networks. BMC Bioinformatics, 10(1), 73. https://doi.org/10.1186/1471-2105-10-73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Chen, J., Xu, H., Aronow, B. J., & Jegga, A. G. (2007). Improved human disease candidate gene prioritization using mouse phenotype. BMC Bioinformatics, 8(1), 392. https://doi.org/10.1186/1471-2105-8-392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Lyall, R., Nikoloski, Z., & Gechev, T. (2020). Comparative analysis of ROS network genes in extremophile eukaryotes. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms21239131

    Article  PubMed  PubMed Central  Google Scholar 

  42. Carbon, S., Ireland, A., Mungall, C. J., Shu, S., Marshall, B., & Lewis, S. (2009). AmiGO: Online access to ontology and annotation data. Bioinformatics, 25(2), 288–289. https://doi.org/10.1093/bioinformatics/btn615

    Article  PubMed  CAS  Google Scholar 

  43. Riss, T. L., Moravec, R. A., Niles, A. L., Duellman, S., Benink, H. A., Worzella, T. J., & Minor, L., et al. (2004). Cell viability assays. In S. Markossian, A. Grossman, & K. Brimacombe (Eds.), Assay guidance manual. Eli Lilly and Company and the National Center for Advancing Translational Sciences.

    Google Scholar 

  44. Edgar, R. (2002). Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Research, 30(1), 207–210. https://doi.org/10.1093/nar/30.1.207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Barrett, T., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim, I. F., Tomashevsky, M., Marshall, K. A., Phillippy, K. H., Sherman, P. M., Holko, M., Yefanov, A., Lee, H., Zhang, N., Robertson, C. L., Serova, N., Davis, S., & Soboleva, A. (2013). NCBI GEO: Archive for functional genomics data sets-Update. Nucleic Acids Research, 41, D991–D995. https://doi.org/10.1093/nar/gks1193

    Article  PubMed  CAS  Google Scholar 

  46. Huber, W., Carey, V. J., Gentleman, R., Anders, S., Carlson, M., Carvalho, B. S., Bravo, H. C., Davis, S., Gatto, L., Girke, T., Gottardo, R., Hahne, F., Hansen, K. D., Irizarry, R. A., Lawrence, M., Love, M. I., MacDonald, J., Obenchain, V., Oles, A. K., … Morgan, M. (2015). Orchestrating high-throughput genomic analysis with Bioconductor. Nature Methods, 12(2), 115–121. https://doi.org/10.1038/nmeth.3252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28(1), 27–30. https://doi.org/10.1093/nar/28.1.27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Kanehisa, M. (2019). Toward understanding the origin and evolution of cellular organisms. Protein Science, 28(11), 1947–1951. https://doi.org/10.1002/pro.3715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M., & Tanabe, M. (2021). KEGG: Integrating viruses and cellular organisms. Nucleic Acids Research, 49(D1), D545–D551. https://doi.org/10.1093/nar/gkaa970

    Article  PubMed  CAS  Google Scholar 

  50. Nishimura, D. (2001). BioCarta. Biotech Software and Internet Report, 2(3), 117–120. https://doi.org/10.1089/152791601750294344

    Article  Google Scholar 

  51. Karp, P. D., Billington, R., Caspi, R., Fulcher, C. A., Latendresse, M., Kothari, A., Keseler, I. M., Krummenacker, M., Midford, P. E., Ong, Q., Ong, W. K., Paley, S. M., & Subhraveti, P. (2019). The BioCyc collection of microbial genomes and metabolic pathways. Briefings in Bioinformatics, 20(4), 1085–1093. https://doi.org/10.1093/bib/bbx085

    Article  PubMed  CAS  Google Scholar 

  52. Fabregat, A., Korninger, F., Viteri, G., Sidiropoulos, K., Marin-Garcia, P., Ping, P., Wu, G., Stein, L., D’Eustachio, P., & Hermjakob, H. (2018). Reactome graph database: Efficient access to complex pathway data. PLoS Computational Biology, 14(1), e1005968. https://doi.org/10.1371/journal.pcbi.1005968

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Fabregat, A., Sidiropoulos, K., Viteri, G., Forner, O., Marin-Garcia, P., Arnau, V., D’Eustachio, P., Stein, L., & Hermjakob, H. (2017). Reactome pathway analysis: A high-performance in-memory approach. BMC Bioinformatics, 18(1), 142. https://doi.org/10.1186/s12859-017-1559-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Fabregat, A., Sidiropoulos, K., Viteri, G., Marin-Garcia, P., Ping, P., Stein, L., D’Eustachio, P., & Hermjakob, H. (2018). Reactome diagram viewer: Data structures and strategies to boost performance. Bioinformatics, 34(7), 1208–1214. https://doi.org/10.1093/bioinformatics/btx752

    Article  PubMed  CAS  Google Scholar 

  55. Jassal, B., Matthews, L., Viteri, G., Gong, C., Lorente, P., Fabregat, A., Sidiropoulos, K., Cook, J., Gillespie, M., Haw, R., Loney, F., May, B., Milacic, M., Rothfels, K., Sevilla, C., Shamovsky, V., Shorser, S., Varusai, T., Weiser, J., … D’Eustachio, P. (2020). The reactome pathway knowledgebase. Nucleic Acids Research, 48(D1), D498–D503. https://doi.org/10.1093/nar/gkz1031

    Article  PubMed  CAS  Google Scholar 

  56. Sidiropoulos, K., Viteri, G., Sevilla, C., Jupe, S., Webber, M., Orlic-Milacic, M., Jassal, B., May, B., Shamovsky, V., Duenas, C., Rothfels, K., Matthews, L., Song, H., Stein, L., Haw, R., D’Eustachio, P., Ping, P., Hermjakob, H., & Fabregat, A. (2017). Reactome enhanced pathway visualization. Bioinformatics, 33(21), 3461–3467. https://doi.org/10.1093/bioinformatics/btx441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Wu, G., & Haw, R. (2017). Functional interaction network construction and analysis for disease discovery. Methods in Molecular Biology, 1558, 235–253. https://doi.org/10.1007/978-1-4939-6783-4_11

    Article  PubMed  CAS  Google Scholar 

  58. Dahlquist, K. D., Salomonis, N., Vranizan, K., Lawlor, S. C., & Conklin, B. R. (2002). GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nature Genetics, 31(1), 19–20. https://doi.org/10.1038/ng0502-19

    Article  PubMed  CAS  Google Scholar 

  59. Liberzon, A., Birger, C., Thorvaldsdottir, H., Ghandi, M., Mesirov, J. P., & Tamayo, P. (2015). The molecular signatures database (MSigDB) hallmark gene set collection. Cell Systems, 1(6), 417–425. https://doi.org/10.1016/j.cels.2015.12.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Liberzon, A., Subramanian, A., Pinchback, R., Thorvaldsdottir, H., Tamayo, P., & Mesirov, J. P. (2011). Molecular signatures database (MSigDB) 3.0. Bioinformatics, 27(12), 1739–1740. https://doi.org/10.1093/bioinformatics/btr260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., & Mesirov, J. P. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences, 102(43), 15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  CAS  Google Scholar 

  62. Petri, V., Shimoyama, M., Hayman, G. T., Smith, J. R., Tutaj, M., de Pons, J., et al. (2011). The rat genome database pathway portal. Database. https://doi.org/10.1093/database/bar010Suns.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation CHE-1900417.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan D. McCulla.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isor, A., O’Dea, A.T., Grady, S.F. et al. Effects of photodeoxygenation on cell biology using dibenzothiophene S-oxide derivatives as O(3P)-precursors. Photochem Photobiol Sci 20, 1621–1633 (2021). https://doi.org/10.1007/s43630-021-00136-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43630-021-00136-5

Navigation