Skip to main content
Log in

Helical structures of unnatural peptides for biological applications

  • Review Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Many important biological functions involve the recognition of helical domains of natural proteins. A number of strategies have been developed to mimic natural helices in proteins. Unnatural peptides are constructed with incorporation of artificial building blocks other than α-amino acid residues, and could adopt stable helical conformations. These nontraditional helical oligomers have been explored to mimic biological functions involved with helical domains of natural proteins. This review provides representative examples of the mimicry of natural peptide helices with unnatural ones and related biological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crisma M, Formaggio F, Moretto A, Toniolo C. Peptide helices based on α-amino acids. Biopolymers. 2006; 84(1):3–12.

    Article  Google Scholar 

  2. Guichard G, Huc I, Synthetic foldamers. Chem Commun. 2011; 47(21):5933–5941.

    Article  Google Scholar 

  3. Goodman CM, Choi S, Shandler S, DeGrado WF. Foldamers as versatile frameworks for the design and evolution of function. Nat Chem Biol. 2007; 3(5):252–262.

    Article  Google Scholar 

  4. Gellman SH. Foldamers: A manifesto. Acc Chem Res. 1998; 31(4):173–180.

    Article  Google Scholar 

  5. Cheng RP, Gellman SH, DeGrado WF. beta-peptides: From structure to function. Chem Rev. 2001; 101(10):3219–3232.

    Article  Google Scholar 

  6. Seebach D, Hook DF, Glättli A. Helices and other secondary structures of β- and γ-peptides. Peptide Sci. 2006; 84(1):23–37.

    Article  Google Scholar 

  7. Pilsl LKA, Reiser O. α/β-Peptide foldamers: State of the art. Amino Acids. 2011; 41(3):709–718.

    Article  Google Scholar 

  8. Martinek TA, Fulop F. Peptidic foldamers: Ramping up diversity. Chem Soc Rev. 2012; 41(2):687–702.

    Article  Google Scholar 

  9. Hill DJ, Mio MJ, Prince RB, Hughes TS, Moore JS. A field guide to foldamers. Chem Rev. 2001; 101(12):3893–4011.

    Article  Google Scholar 

  10. Appella DH, Christianson LA, Karle IL, Powell DR, Gellman SH. β-Peptide foldamers: Robust helix formation in a new family of β-Amino acid oligomers. J Am Chem Soc. 1996; 118(51):13071–13072.

    Article  Google Scholar 

  11. Seebach D, Overhand M, Kühnle FNM, Martinoni B, Oberer L, Hommel U, Widmer H. β-Peptides: Synthesis by Arndt-Eistert homologation with concomitant peptide coupling. Structure determination by NMR and CD spectroscopy and by X-ray crystallography. Helical secondary structure of a β-hexapeptide in solution and its stability towards pepsin. Helv Chim Acta. 1996; 79(4):913–941.

    Article  Google Scholar 

  12. Appella DH, Christianson LA, Klein DA, Powell DR, Huang X, Barchi JJ, Gellman SH. Residue-based control of helix shape in β-peptide oligomers. Nature. 1997; 387(6631):381–384.

    Article  Google Scholar 

  13. Porter EA, Wang X, Lee H-S, Weisblum B, Gellman SH. Antibiotics: Non-haemolytic β-amino acid oligomers. Nature. 2000; 404(6778):565.

    Article  Google Scholar 

  14. English EP, Chumanov RS, Gellman SH, Compton T. Rational development of β-peptide inhibitors of human cytomegalovirus entry. J Biol Chem. 2006; 281(5):2661–2667.

    Article  Google Scholar 

  15. Seebach D, Abele S, Gademann K, Guichard G, Hintermann T, Jaun B, Matthews JL, Schreiber JV, Oberer L, Hommel U, Widmer H. β2- and β3-peptides with proteinaceous side chains: Synthesis and solution structures of constitutional isomers, a novel helical secondary structure and the influence of solvation and hydrophobic interactions on folding. Helv Chim Acta. 1998; 81(5-8):932–982.

    Article  Google Scholar 

  16. Seebach D, Matthews JL. β-Peptides: A surprise at every turn. Chem Commun. 1997; (21):2015–2022.

    Google Scholar 

  17. Lee M-R, Raguse TL, Schinnerl M, Pomerantz WC, Wang X, Wipf P, Gellman SH. Origins of the high 14-helix propensity of cyclohexyl-rigidified residues in β-peptides. Org Lett. 2007; 9(9):1801–1804.

    Article  Google Scholar 

  18. Podlech J, Seebach D, The Arndt-Eistert reaction in peptide chemistry: A facile access to homopeptides. Angew Chem Int Edit. 1995; 34(4):471–472.

    Article  Google Scholar 

  19. Hamuro Y, Schneider JP, DeGrado WF. De novo design of antibacterial β-peptides. J Am Chem Soc. 1999; 121(51):12200–12201.

    Article  Google Scholar 

  20. Epand RF, Raguse TL, Gellman SH, Epand RM. Antimicrobial 14-helical β-peptides: Potent bilayer disrupting agents?. Biochemistry. 2004; 43(29):9527–9535.

    Article  Google Scholar 

  21. Karlsson AJ, Pomerantz WC, Weisblum B, Gellman SH, Palecek SP. Antifungal activity from 14-helical β-peptides. J Am Chem Soc. 2006; 128(39):12630–12631.

    Article  Google Scholar 

  22. Daniels DS, Petersson EJ, Qiu JX, Schepartz A. High-resolution structure of a β-peptide bundle. J Am Chem Soc. 2007; 129(6):1532–1533.

    Article  Google Scholar 

  23. Park J-S, Lee H-S, Lai JR, Kim BM, Gellman SH. Accommodation of α-substituted residues in the β-peptide 12-helix: Expanding the range of substitution patterns available to a foldamer scaffold. J Am Chem Soc. 2003; 125(28):8539–8545.

    Article  Google Scholar 

  24. LePlae PR, Fisk JD, Porter EA, Weisblum B, Gellman SH. Tolerance of acyclic residues in the β-peptide 12-helix: Access to diverse side-chain arrays for biological applications. J Am Chem Soc. 2002; 124(24):6820–6821.

    Article  Google Scholar 

  25. Choi SH, Guzei IA, Spencer LC, Gellman SH. Crystallographic characterization of 12-helical secondary structure in β-peptides containing side chain groups. J Am Chem Soc. 2010; 132(39):13879–13885.

    Article  Google Scholar 

  26. Peelen TJ, Chi Y, English EP, Gellman SH. Synthesis of 4,4-disubstituted 2-aminocyclopentanecarboxylic acid derivatives and their incorporation into 12-helical β-peptides. Org Lett. 2004; 6(24):4411–4414.

    Article  Google Scholar 

  27. Horne WS, Gellman SH. Foldamers with heterogeneous backbones. Acc Chem Res. 2008; 41(10):1399–13408.

    Article  Google Scholar 

  28. Hayen A, Schmitt MA, Ngassa FN, Thomasson KA, Gellman SH. Two helical conformations from a single foldamer backbone: “Split personality” in short α/β-peptides. Angew Chem Int Edit. 2004; 43(4):505–510.

    Article  Google Scholar 

  29. De Pol S, Zorn C, Klein CD, Zerbe O, Reiser O. Surprisingly stable helical conformations in α/β-peptides by incorporation of cis-β-aminocyclopropane carboxylic acids. Angew Chem Int Edit. 2004; 43(4):511–514.

    Article  Google Scholar 

  30. Schmitt MA, Weisblum B, Gellman SH. Unexpected relationships between structure and function in α,β-peptides: Antimicrobial foldamers with heterogeneous backbones. J Am Chem Soc. 2004; 126(22):6848–6849.

    Article  Google Scholar 

  31. Lee EF, Sadowsky JD, Smith BJ, Czabotar PE, Peterson-Kaufman KJ, Colman PM, Gellman SH, Fairlie WD. Highresolution structural characterization of a helical α/β-peptide foldamer bound to the anti-apoptotic protein Bcl-xL. Angew Chem Int Edit. 2009; 48(24):4318–4322.

    Article  Google Scholar 

  32. Sadowsky JD, Schmitt MA, Lee H-S, Umezawa N, Wang S, Tomita Y, Gellman SH. Chimeric (α/β + α)-peptide ligands for the BH3-recognition cleft of Bcl-xL: Critical role of the molecular scaffold in protein surface recognition. J Am Chem Soc. 2005; 127(34):11966–11968.

    Article  Google Scholar 

  33. Sadowsky JD, Fairlie WD, Hadley EB, Lee H-S, Umezawa N, Nikolovska-Coleska Z, Wang S, Huang DCS, Tomita Y, Gellman SH. (α/β+α)-Peptide antagonists of BH3 domain/BclxL recognition: Toward general strategies for foldamer-based inhibition of proteinprotein interactions. J Am Chem Soc. 2007; 129(1):139–154.

    Article  Google Scholar 

  34. Koglin N, Zorn C, Beumer R, Cabrele C, Bubert C, Sewald N, Reiser O, Beck-Sickinger AG. Analogues of neuropeptide Y containing β-aminocyclopropane carboxylic acids are the shortest linear peptides that are selective for the Y1 receptor. Angew Chem Int Edit. 2003; 42(2):202–205.

    Article  Google Scholar 

  35. Baldauf C, Günther R, Hofmann H-J. Helix formation and folding in γ-peptides and their vinylogues. Helv Chim Acta. 2003; 86(7):2573–2588.

    Article  Google Scholar 

  36. Bouillère F, Thétiot-Laurent S, Kouklovsky C, Alezra V. Foldamers containing γ-amino acid residues or their analogues: structural features and applications. Amino Acids. 2011; 41(3):687–707.

    Article  Google Scholar 

  37. Karle IL, Pramanik A, Banerjee A, Bhattacharjya S, Balaram P. ω-Amino acids in peptide design. crystal structures and solution conformations of peptide helices containing a β-alanyl-γ-aminobutyryl segment. J Am Chem Soc. 1997; 119(39):9087–9095.

    Article  Google Scholar 

  38. Araghi RR, Koksch B. A helix-forming αβγ-chimeric peptide with catalytic activity: A hybrid peptide ligase. Chem Commun. 2011; 47(12):3544–3546.

    Article  Google Scholar 

  39. Araghi RR, Jäckel C, Cölfen H, Salwiczek M, Völkel A, Wagner SC, Wieczorek S, Baldauf C, Koksch B. A β/γ motif to mimic α-helical turns in proteins. ChemBioChem. 2010; 11(3):335–339.

    Article  Google Scholar 

  40. Semetey V, Rognan D, Hemmerlin C, Graff R, Briand J-P, Marraud M, Guichard G. Stable helical secondary structure in short-chain N,N’-linked oligoureas bearing proteinogenic side chains. Angew Chem Int Edit. 2002; 41(11):1973–1975.

    Google Scholar 

  41. Fischer L, Claudon P, Pendem N, Miclet E, Didierjean C, Ennifar E, Guichard G. The canonical helix of urea oligomers at atomic resolution: Insights into folding-induced axial organization. Angew Chem Int Edit. 2010; 112(6):1085–1088.

    Google Scholar 

  42. Violette A, Fournel S, Lamour K, Chaloin O, Frisch B, Briand JP, Monteil H, Guichard G. Mimicking helical antibacterial peptides with nonpeptidic folding oligomers. Chem Biol. 2006; 13(5):531–538.

    Article  Google Scholar 

  43. Claudon P, Violette A, Lamour K, Decossas M, Fournel S, Heurtault B, Godet J, Mély Y, Jamart-Grégoire B, Averlant-Petit M-C, Briand J-P, Duportail G, Monteil H, Guichard G. Consequences of isostructural main-chain modifications for the design of antimicrobial foldamers: Helical mimics of hostdefense peptides based on a heterogeneous amide/urea backbone. Angew Chem Int Edit. 2010; 49(2):333–336.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo Hyuk Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, S.H. Helical structures of unnatural peptides for biological applications. Biomed. Eng. Lett. 3, 226–231 (2013). https://doi.org/10.1007/s13534-013-0116-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-013-0116-9

Keywords

Navigation