Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Residue-based control of helix shape in β-peptide oligomers

Abstract

Proteins and RNA are unique among known polymers in their ability to adopt compact and well-defined folding patterns. These two biopolymers can perform complex chemical operations such as catalysis and highly selective recognition, and these functions are linked to folding in that the creation of an active site requires proper juxtaposition of reactive groups. So the development of new types of polymeric backbones with well-defined and predictable folding propensities ('foldamers') might lead to molecules with useful functions1,2. The first step in foldamer development is to identify synthetic oligomers with specific secondary structural preferences3–13. Whereas α-amino acids can adopt the well-known α-helical motif of proteins, it was shown recently11–13 that β-peptides3 constructed from carefully chosen β-amino acids can adopt a different, stable helical conformation defined by interwoven 14-membered-ring hydrogen bonds (a 14-helix; Fig. la). Here we report that β-amino acids can also be used to design β-peptides with a very different secondary structure, a 12-helix (Fig. la). This demonstrates that by altering the nature of β-peptide residues, one can exert rational control over the secondary structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ball, P. Designing the Molecular World (Princeton Univ. Press, Princeton, 1994).

    Google Scholar 

  2. Lehn, J.-M. Supramolecular Chemistry: Concepts and Perspectives (VCH, Weinheim, 1995).

    Book  Google Scholar 

  3. Dado, G. P. & Gellman, S. H. Intramolecular hydrogen bonding in derivatives of β-alanine and γ-amino butyric acid: model studies for the folding of unnatural polypeptide backbones. J. Am. Chem. Soc. 116, 1054–1062 (1994).

    Article  CAS  Google Scholar 

  4. Hagihara, M., Anthony, N. J., Stout, T. J., Clardy, J. & Schreiber, S. L. Vinylogous polypeptides: an alternative peptide backbone. J. Am. Chem. Soc. 114, 6568–6570 (1992).

    Article  CAS  Google Scholar 

  5. Eschenmoser, A. Chemistry of potentially prebiological natural products. Origins Life 24, 389–423 (1994).

    Article  CAS  Google Scholar 

  6. Hamuro, Y., Geib, S. J. & Hamilton, A. H. Oligoanthranilamides. Non-peptide subunits that show formation of specific secondary structure. J. Am. Chem. Soc. 118, 7529–7541 (1996).

    Article  CAS  Google Scholar 

  7. Gennari, C., Salom, B., Potenza, D. & Williams, A. Synthesis of sulfonamido-pseudopeptides: new chiral unnatural oligomers. Angew. Chem. Int. Edn Engl. 33, 2067–2069 (1994).

    Article  Google Scholar 

  8. Lokey, R. S. & Iverson, B. L. Synthetic molecules that fold into a pleated secondary structure in solution. Nature 375, 303–305 (1995).

    Article  CAS  ADS  Google Scholar 

  9. Smith, A. B. et al. De novo design, synthesis and X-ray crystal structures of pyrrolinone-based β-strand mimetics. J. Am. Chem. Soc. 116, 9947–9962 (1994).

    Article  CAS  Google Scholar 

  10. Nowick, J. S., Mahrus, S., Smith, E. M. & Ziller, J. W. Triurea derivatives of diethylenetriamine as potential templates for the formation of artificial β-sheets. J. Am. Chem. Soc. 118, 1066–1072 (1996).

    Article  CAS  Google Scholar 

  11. Seebach, D. et al. β-Peptides: synthesis by Arndt-Eistert homologation with concomitant peptide coupling. Structure determination by NMR and CD spectroscopy and by X-ray crystallography. Helical secondary structure of a β-hexapeptide in solution and its stability towards pepsin. Helv. Chim. Acta 79, 913–941 (1996).

    Article  CAS  Google Scholar 

  12. Seebach, D. et al. Probing the helical secondary structure of short-chain β-peptides. Helv. Chim. Acta 79, 2043–2066 (1996).

    Article  CAS  Google Scholar 

  13. Appella, D. H., Christianson, L. A., Karle, I. L., Powell, D. R. & Gellman, S. H. β-Peptide foldamers: robust helix formation in a new family of β-amino acid oligomers. J. Am. Chem. Soc. 118, 13071–13072 (1996).

    Article  CAS  Google Scholar 

  14. Yuki, H., Okamoto, Y., Taketani, Y., Tsubota, T. & Marubayashi, Y. Poly(β-amino acid)s. IV. Synthesis and conformational properties of poly(α-isobutyl-L-aspartate). J. Polym. Sci. Polym. Chem. Edn 16, 2237–2251 (1978).

    Article  CAS  ADS  Google Scholar 

  15. Fernández-Santin, J. M., Aymami, J., Rodríguez-Galan, A., Muñoz-Guerra, S. & Subirana, J. A. A pseudo α-helix from poly(α-isobutyl-L-aspartate), a nylon-3 derivative. Nature 311, 53–54 (1984).

    Article  ADS  Google Scholar 

  16. Fernández-Santin, J. M. et al. Helical conformations in a polyamide of the nylon-3 family. Macromolecules 20, 62–68 (1987).

    Article  ADS  Google Scholar 

  17. Bella, J., Alemán, C., Fernández-Santin, J. M., Alegre, C. & Subirana, J. A. Conformation of the helical polyamide poly(α-isobutyl-L-aspartate). Macromolecules 25, 5225–5230 (1992).

    Article  CAS  ADS  Google Scholar 

  18. López-Carrasquero, F, Alemá, C. & Muñoz-Guerra, S. Conformational analysis of helical poly(β-L-aspartate)s by IR dichroism. Biopolymers 36, 263–271 (1995).

    Article  Google Scholar 

  19. Herradon, B. & Seebach, D. Monoalkylation and dialkylation of derivatives of (IR, 2S)-2-hydro-xycyclopentanecarboxylic acid and (1R, 2S)-2-hydroxycyclohexanecarboxylic acid via bicyclic dioxanones: selective generation of three contiguous stereogenic centers on a cyclohexane ring. Helv. Chim. Acta 72, 690–714 (1989).

    Article  CAS  Google Scholar 

  20. Tilley, J. W. et al. Analogs of Ac-CCK-7 incorporating dipeptide mimics in place of Met29–Gly29. J. Med. Chem. 35, 3774–3783 (1992).

    Article  CAS  Google Scholar 

  21. Braunschweiler, L. & Ernst, R. R. Coherence transfer by isotropic mixing: application to proton correlation spectroscopy. J. Magn. Reson. 53, 521–528 (1983).

    CAS  ADS  Google Scholar 

  22. Bothner-By, A. A., Stephens, R. L., Lee, J., Warren, C. D. & Jeanloz, R. W. Structure determination of a tetrasaccharide: transient nuclear Overhauser effects in the rotating frame. J. Am. Chem. Soc. 106, 811–813 (1984).

    Article  CAS  Google Scholar 

  23. Creighton, T. E. Proteins: Structures and Molecular Properties, 2nd Edn (Freeman, New York, 1993).

    Google Scholar 

  24. Xiong, H., Buckwalter, B. L., Shieh, H.-M. & Hecht, M. H. Periodicity of polar and nonpolar amino acids is the major determinant of secondary structure in self-assembling oligomeric peptides. Proc. Natl Acad. Sci. USA 92, 6349–6353 (1995).

    Article  CAS  ADS  Google Scholar 

  25. Schenck, H. L., Dado, G. P. & Gellman, S. H. Redox-triggered secondary structure changes in the aggregated states of a designed methionine-rich peptide. J. Am. Chem. Soc. 118, 12487–12494 (1996).

    Article  CAS  Google Scholar 

  26. Barlow, D. J. & Thornton, J. M. Helix geometry in proteins. J. Mol. Biol. 201, 601–619 (1988).

    Article  CAS  Google Scholar 

  27. Bacon, D. J. & Anderson, W. F. A fast algorithm for rendering space-filling molecule pictures. J. Mol. Graphics 6, 219–220 (1988).

    Article  Google Scholar 

  28. Merrit, E. A. & Murphy, M. E. P. Raster3D version 2.0: a program for photorealistic molecular graphics. Acta Cryst. D50, 869–873 (1994).

    Google Scholar 

  29. Kraulis, P. J. Molscript: a program to produce both detailed and schematic plots of protein structures. J. Appl. Cryst. 24, 946–950 (1991).

    Article  Google Scholar 

  30. Brooks, B. R. et al. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Appella, D., Christianson, L., Klein, D. et al. Residue-based control of helix shape in β-peptide oligomers. Nature 387, 381–384 (1997). https://doi.org/10.1038/387381a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/387381a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing