Skip to main content

Advertisement

Log in

The hedgehog pathway regulates cancer stem cells in serous adenocarcinoma of the ovary

  • Original paper
  • Published:
Cellular Oncology Aims and scope Submit manuscript

Abstract

Purpose

Signaling by cancer stem cells (CSCs) is known to occur at least in part through conserved developmental pathways. Here, the role of one of these pathways, i.e., the hedgehog pathway, was evaluated in high-grade serous ovarian carcinoma (HGSOC).

Methods and results

We found that in HGSOC, hedgehog inhibitors (HHIs) GANT61, LDE225 and GDC0449 reduced or inhibited the formation of spheroids enriched in CSCs. Primary malignant cells (PMCs) in ascites from HGSOC patients cultured in the presence of HHIs showed significant reduction in CSCs. Sonic hedgehog (SHH) significantly increased the expression of ALDH1A1, which was inhibited by GANT61. In the presence of a SHH neutralizing antibody (5E1), a significant reduction in the number of spheroids was observed in HGSOC-derived cell lines. Further, the motility, migration and clonogenic growth of the cells were significantly reduced by HHIs. In the presence of GANT61, a reduction of cells from PMCs in the G0 phase of the cell cycle was observed. The magnitude of difference in expression of Gli1 in tumors from the same HGSOC patients at presentation and at interval debulking surgery was greater in patients who had a recurrence on follow up. GANT61 also significantly inhibited the growth of CSCs in nude mice. Finally, RNA sequencing of HGSOC cells treated with GANT61 showed a significantly reduced expression of CSC markers.

Conclusions

Our results indicate that the hedgehog pathway plays an important role in maintaining the integrity of CSCs in HGSOC and could be a potential therapeutic target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article [and its supplementary files]. The RNA-Seq data generated and/or analyzed during the current study are available in the Sequence Read Archive (SRA): Bio Project ID PRJNA477252 and PRJNA488919 (https://submit.ncbi.nlm.nih.gov/subs/sra/SUB4484897/overview) (https://submit.ncbi.nlm.nih.gov/subs/sra/SUB4486097/overview).

References

  1. A. Desai, Y. Yan, S.L. Gerson, Concise reviews: cancer stem cell targeted therapies: toward clinical success. Stem Cells Transl. Med. 8, 75–81 (2019)

    Article  Google Scholar 

  2. R.P. Nagare, S. Sneha, S.K. Priya, T.S. Ganesan, Cancer stem cells - are surface markers alone sufficient? Curr. Stem Cell Res. Ther. 12, 37–44 (2017)

    Article  CAS  Google Scholar 

  3. N. Perrimon, C. Pitsouli, B.Z. Shilo, Signaling mechanisms controlling cell fate and embryonic patterning. Cold Spring Harb. Perspect. Biol. 4, a005975 (2012)

    Article  Google Scholar 

  4. S. Schmid, M. Bieber, F. Zhang, M. Zhang, B. He, D. Jablons, N.N. Teng, Wnt and hedgehog gene pathway expression in serous ovarian cancer. Int. J. Gynecol. Cancer 21, 975–980 (2011)

    Article  Google Scholar 

  5. X. Liao, M.K. Siu, C.W. Au, E.S. Wong, H.Y. Chan, P.P. Ip, H.Y. Ngan, A.N. Cheung, Aberrant activation of hedgehog signaling pathway in ovarian cancers: effect on prognosis, cell invasion and differentiation. Carcinogenesis 30, 131–140 (2009)

    Article  CAS  Google Scholar 

  6. A.D. Steg, A.A. Katre, K.S. Bevis, A. Ziebarth, Z.C. Dobbin, M.M. Shah, R.D. Alvarez, C.N. Landen, Smoothened antagonists reverse taxane resistance in ovarian cancer. Mol. Cancer Ther. 11, 1587–1597 (2012)

    Article  CAS  Google Scholar 

  7. F.D. Ibrahim, Preliminary studies on the physiological and pharmacological actions of the extract of Orobanche crenata. J. Egypt. Med. Assoc. 51, 939–948 (1968)

    CAS  PubMed  Google Scholar 

  8. D. Abetov, Z. Mustapova, T. Saliev, D. Bulanin, K. Batyrbekov, C.P. Gilman, Novel small molecule inhibitors of cancer stem cell signaling pathways. Stem Cell Rev. 11, 909–918 (2015)

    Article  CAS  Google Scholar 

  9. T. Ishiguro, H. Ohata, A. Sato, K. Yamawaki, T. Enomoto, K. Okamoto, Tumor-derived spheroids: relevance to cancer stem cells and clinical applications. Cancer Sci. 108, 283–289 (2017)

    Article  CAS  Google Scholar 

  10. P.A. Bignone, K.Y. Lee, Y. Liu, G. Emilion, J. Finch, A.E. Soosay, F.M. Charnock, S. Beck, I. Dunham, A.J. Mungall, T.S. Ganesan, RPS6KA2, a putative tumour suppressor gene at 6q27 in sporadic epithelial ovarian cancer. Oncogene 26, 683–700 (2007)

    Article  CAS  Google Scholar 

  11. R.C. Dregalla, J. Zhou, R.R. Idate, C.L. Battaglia, H.L. Liber, S.M. Bailey, Regulatory roles of tankyrase 1 at telomeres and in DNA repair: suppression of T-SCE and stabilization of DNA-PKcs. Aging (Albany N. Y.) 2, 691–708 (2010)

    CAS  Google Scholar 

  12. S.J. Scales, F.J. de Sauvage, Mechanisms of Hedgehog pathway activation in cancer and implications for therapy. Trends Pharmacol. Sci. 30, 303–312 (2009)

    Article  CAS  Google Scholar 

  13. N. Gopalakrishnan, N.D. Sivasithamparam, H. Devaraj, Synergistic association of Notch and NFkappaB signaling and role of Notch signaling in modulating epithelial to mesenchymal transition in colorectal adenocarcinoma. Biochimie 107 Pt B, 310–318 (2014)

    Article  Google Scholar 

  14. M. Lauth, A. Bergstrom, T. Shimokawa, R. Toftgard, Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists. Proc. Natl. Acad. Sci. U. S. A. 104, 8455–8460 (2007)

  15. S. Pan, X. Wu, J. Jiang, W. Gao, Y. Wan, D. Cheng, D. Han, J. Liu, N.P. Englund, Y. Wang, S. Peukert, K. Miller-Moslin, J. Yuan, R. Guo, M. Matsumoto, A. Vattay, Y. Jiang, J. Tsao, F. Sun, A.C. Pferdekamper, S. Dodd, Tuntland T, W. Maniara, J.F. Kelleher, Y.M. Yao, M. Warmuth, J. Williams, M. Dorsch, Discovery of NVP-LDE225, a potent and selective smoothened antagonist. ACS Med. Chem. Lett. 1, 130–134 (2010)

    Article  CAS  Google Scholar 

  16. P.B. Gupta, T.T. Onder, G. Jiang, K. Tao, C. Kuperwasser, R.A. Weinberg, E.S. Lander, Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138, 645–659 (2009)

    Article  CAS  Google Scholar 

  17. B.A. Kaipparettu, I. Kuiatse, B. Tak-Yee Chan, M. Benny Kaipparettu, A.V. Lee, S. Oesterreich, Novel egg white-based 3-D cell culture system. Biotechniques 45, 165–168 (2008) 170 – 161

    Article  CAS  Google Scholar 

  18. Z. Darzynkiewicz, G. Juan, E. Bedner, Determining cell cycle stages by flow cytometry. Curr. Protoc. Cell Biol. 1, 8.4.1–8.4.18 (1999)

  19. R.P. Nagare, S. Sneha, S. Ramesh, T.S. Ganesan, Analysis of hematopoietic stem cells using a composite approach. Int. J. Biochem. Cell Biol. 109, 82–89 (2019)

    Article  CAS  Google Scholar 

  20. Y.C. Wang, Y.T. Yo, H.Y. Lee, Y.P. Liao, T.K. Chao, P.H. Su, H.C. Lai, ALDH1-bright epithelial ovarian cancer cells are associated with CD44 expression, drug resistance, and poor clinical outcome. Am. J. Pathol. 180, 1159–1169 (2012)

    Article  CAS  Google Scholar 

  21. S. Krishna Priya, K. Kumar, K.R. Hiran, M.R. Bindhu, R.P. Nagare, D.K. Vijaykumar, T.S. Ganesan, Expression of a novel endothelial marker, C-type lectin 14A, in epithelial ovarian cancer and its prognostic significance. Int. J. Clin. Oncol. 22, 107–117 (2017)

    Article  CAS  Google Scholar 

  22. S. Condello, C.A. Morgan, S. Nagdas, L. Cao, J. Turek, T.D. Hurley, and D. Matei, beta-Catenin-regulated ALDH1A1 is a target in ovarian cancer spheroids. Oncogene 34, 2297–2308 (2015)

  23. S. Sneha, R.P. Nagare, P. Manasa, S. Vasudevan, A. Shabna, T.S. Ganesan, Analysis of human stem cell transcription factors. Cell. Reprogram. 21, 171–180 (2019)

  24. H.G. Lee, S.J. Shin, H.W. Chung, S.H. Kwon, S.D. Cha, J.E. Lee, C.H. Cho, Salinomycin reduces stemness and induces apoptosis on human ovarian cancer stem cell. J. Gynecol. Oncol. 28, e14 (2017)

  25. H.R. Maun, X. Wen, A. Lingel, F.J. de Sauvage, R.A. Lazarus, S.J. Scales, S.G. Hymowitz, Hedgehog pathway antagonist 5E1 binds hedgehog at the pseudo-active site. J. Biol. Chem. 285, 26570–26580 (2010)

    Article  CAS  Google Scholar 

  26. O.H. Yilmaz, R. Valdez, B.K. Theisen, W. Guo, D.O. Ferguson, H. Wu, S.J. Morrison, Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441, 475–482 (2006)

    Article  CAS  Google Scholar 

  27. M.C. Boelens, T.J. Wu, B.Y. Nabet, B. Xu, Y. Qiu, T. Yoon, D.J. Azzam, C. Twyman-Saint, B.Z. Victor, H. Wiemann, P.J. Ishwaran, J. Ter Brugge, J. Jonkers, Slingerland, A.J. Minn, Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways. Cell 159, 499–513 (2014)

    Article  CAS  Google Scholar 

  28. L. Hernandez, M.K. Kim, L.T. Lyle, K.P. Bunch, C.D. House, F. Ning, A.M. Noonan, C.M. Annunziata, Characterization of ovarian cancer cell lines as in vivo models for preclinical studies. Gynecol. Oncol. 142, 332–340 (2016)

    Article  Google Scholar 

  29. A.K. Mitra, D.A. Davis, S. Tomar, L. Roy, H. Gurler, J. Xie, D.D. Lantvit, H. Cardenas, F. Fang, Y. Liu, E. Loughran, J. Yang, M. Sharon Stack, R.E. Emerson, K.D. Cowden, V.B. Dahl, K.P. M, D. Nephew, Matei, J.E. Burdette, In vivo tumor growth of high-grade serous ovarian cancer cell lines. Gynecol. Oncol. 138, 372–377 (2015)

    Article  CAS  Google Scholar 

  30. C.R. Cochrane, A. Szczepny, D.N. Watkins, J.E. Cain, Hedgehog signaling in the maintenance of cancer stem cells. Cancers (Basel) 7, 1554–1585 (2015)

    Article  CAS  Google Scholar 

  31. V.J. Guen, T.E. Chavarria, C. Kroger, X. Ye, R.A. Weinberg, J.A. Lees, EMT programs promote basal mammary stem cell and tumor-initiating cell stemness by inducing primary ciliogenesis and Hedgehog signaling. Proc. Natl. Acad. Sci. U. S. A. 114, E10532-E10539 (2017)

  32. A. Ray, E. Meng, E. Reed, L.A. Shevde, R.P. Rocconi, Hedgehog signaling pathway regulates the growth of ovarian cancer spheroid forming cells. Int. J. Oncol. 39, 797–804 (2011)

    CAS  PubMed  Google Scholar 

  33. P. Ozretic, D. Trnski, V. Musani, I. Maurac, D. Kalafatic, S. Oreskovic, S. Levanat, M. Sabol, Non-canonical Hedgehog signaling activation in ovarian borderline tumors and ovarian carcinomas. Int. J. Oncol. 51, 1869–1877 (2017)

    Article  CAS  Google Scholar 

  34. A. Ciucci, I. De Stefano, V.G. Vellone, L. Lisi, C. Bottoni, G. Scambia, G.F. Zannoni, D. Gallo, Expression of the glioma-associated oncogene homolog 1 (gli1) in advanced serous ovarian cancer is associated with unfavorable overall survival. PLoS One 8, e60145 (2013)

  35. X. Li, W. Deng, S.M. Lobo-Ruppert, J.M. Ruppert, Gli1 acts through Snail and E-cadherin to promote nuclear signaling by beta-catenin. Oncogene 26, 4489–4498 (2007)

    Article  CAS  Google Scholar 

  36. J. Li, J. Cai, S. Zhao, K. Yao, Y. Sun, Y. Li, L. Chen, R. Li, X. Zhai, J. Zhang, C. Jiang, GANT61, a GLI inhibitor, sensitizes glioma cells to the temozolomide treatment. J. Exp. Clin. Cancer Res. 35, 184 (2016)

    Article  Google Scholar 

  37. The Cancer Genome Atlas Research Network, Integrated genomic analyses of ovarian carcinoma. Nature 474, 609–615 (2011)

  38. J. Zhang, Z.Y. Li, X.J. Duan, X.M. Fan, W.N. Liu, Y.H. Li, [Clinical significance of FOXM1 and Gli-1 protein expression in high-grade ovarian serous carcinoma]. Zhonghua Zhong Liu Za Zhi 38, 904–908 (2016)

    CAS  PubMed  Google Scholar 

  39. Q. Li, R.K. Lex, H. Chung, S.M. Giovanetti, Z. Ji, H. Ji, M.D. Person, J. Kim, S.A. Vokes, The pluripotency factor NANOG binds to GLI proteins and represses hedgehog-mediated transcription. J. Biol. Chem. 291, 7171–7182 (2016)

    Article  CAS  Google Scholar 

  40. M. Ding, X. Wang, Antagonism between Hedgehog and Wnt signaling pathways regulates tumorigenicity. Oncol. Lett. 14, 6327–6333 (2017)

    PubMed  PubMed Central  Google Scholar 

  41. J. Reda, J. Vachtenheim, K. Vlckova, P. Horak, J. Vachtenheim Jr., L. Ondrusova, Widespread expression of hedgehog pathway components in a large panel of human tumor cells and inhibition of tumor growth by GANT61: implications for cancer therapy. Int. J. Mol. Sci. 19, (2018)

  42. A. Po, M. Silvano, E. Miele, C. Capalbo, A. Eramo, V. Salvati, M. Todaro, Z.M. Besharat, G. Catanzaro, D. Cucchi, S. Coni, L. Di Marcotullio, G. Canettieri, A. Vacca, G. Stassi, E. De Smaele, M. Tartaglia, I. Screpanti, R. De Maria, E. Ferretti, Noncanonical GLI1 signaling promotes stemness features and in vivo growth in lung adenocarcinoma. Oncogene 36, 4641–4652 (2017)

    Article  CAS  Google Scholar 

  43. N. Li, S. Truong, M. Nouri, J. Moore, N. Al Nakouzi, A.A. Lubik, R. Buttyan, Non-canonical activation of hedgehog in prostate cancer cells mediated by the interaction of transcriptionally active androgen receptor proteins with Gli3. Oncogene 37, 2313–2325 (2018)

    Article  CAS  Google Scholar 

  44. A. Sanchez-Danes, J.C. Larsimont, M. Liagre, E. Munoz-Couselo, G. Lapouge, A. Brisebarre, C. Dubois, M. Suppa, V. Sukumaran, V. Del Marmol, J. Tabernero, C. Blanpain, A slow-cycling LGR5 tumour population mediates basal cell carcinoma relapse after therapy. Nature 562, 434–438 (2018)

    Article  CAS  Google Scholar 

  45. J. Rodriguez-Blanco, L. Pednekar, C. Penas, B. Li, V. Martin, J. Long, E. Lee, W.A. Weiss, C. Rodriguez, N. Mehrdad, D.M. Nguyen, N.G. Ayad, P. Rai, A.J. Capobianco, D.J. Robbins, Inhibition of WNT signaling attenuates self-renewal of SHH-subgroup medulloblastoma. Oncogene 36, 6306–6314 (2017)

    Article  CAS  Google Scholar 

  46. J. Gao, S. Graves, U. Koch, S. Liu, V. Jankovic, S. Buonamici, A. El Andaloussi, S.D. Nimer, B.L. Kee, R. Taichman, F. Radtke, I. Aifantis, Hedgehog signaling is dispensable for adult hematopoietic stem cell function. Cell Stem Cell 4, 548–558 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Biotechnology (DBT) and a research fellowship for Ms. S. Sneha was provided by the University Grants Commission (UGC). We would like to extend our gratitude to Dr. V. Sridevi and Dr. Ujwala for identifying the patients and for the tissues used in the experiments, and the staff and nurses for collecting malignant ascites samples from patients under aseptic conditions. We acknowledge Dr. Priya, Dr. Hascitha and Dr. Hemavathi, Department of Molecular Oncology, for the flow cytometry experiments and the Department of Pathology, Epidemiology and Statistics for their help and support. We also thank Dr. Srividhya and Ms. Kayalvizhi, flow cytometry core facility, IIT-Madras, for the cell sorting experiments.

Author information

Authors and Affiliations

Authors

Contributions

All authors provided critical feedback and helped in shaping the research, results and analyses, and commented on the manuscript. SS contributed substantially to the concept and design, performed the experiments, analyzed and interpreted data and drafted the manuscript. RPN optimized flow cytometry analysis, collected clinical data of patients for immunohistochemistry experiments and helped in critical analysis of the data and interpretation of the results. CS and MG contributed in designing the biochemical studies and provided experimental suggestions. SK helped in optimizing the immunohistochemistry experiments and in SPSS analyses, while RB performed the xenograft study. KM and SS contributed in procuring tissue sections and scoring the slides of the immunohistochemistry experiments. TSG conceived the original idea, critically reviewed and edited all versions of the manuscript and approved the final version.

Corresponding author

Correspondence to Trivadi S. Ganesan.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1.50 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sneha, S., Nagare, R.P., Sidhanth, C. et al. The hedgehog pathway regulates cancer stem cells in serous adenocarcinoma of the ovary. Cell Oncol. 43, 601–616 (2020). https://doi.org/10.1007/s13402-020-00504-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13402-020-00504-w

Keywords

Navigation