Skip to main content
Log in

Antioxidant and antidiabetic properties of bioactive peptides from soursop (Annona muricata) leaf biomass

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

This study investigated the antioxidant and antidiabetic properties of soursop (Annona muricata) leaf biomass hydrolysates (SLH) extracted from the leaf proteins. The results revealed that flavourzyme-generated SLH showed the highest peptide content when compared to alcalase- and trypsin-generated SLH. Application of response surface methodology (RSM) remarkably increased peptide content under the optimized conditions at an E/S ratio of 4% (w/w), hydrolysis time of 4 h, a temperature of 50 °C, and pH of 7. SLH demonstrated stronger antioxidant (DPPH (22.92%) and ABTS (90.55%)) and antidiabetic (α-glucosidase inhibition (66.44%) and α-amylase inhibition (58.50%)) activities. A total of 14 peptides were identified as bioactive peptides, among which two peptides (FLAISPKAMK and WDSKWTHI) possessed the highest binding probability toward α-glucosidase and α-amylase. These peptides contain hydrophobic amino acids, which are important in improving the antioxidant activities of peptides. In conclusion, SLH could be useful for diabetes prevention.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data are available upon reasonable request.

References

  1. Wang J, Du K, Fang L, Liu C, Min W, Liu J (2018) Evaluation of the antidiabetic activity of hydrolyzed peptides derived from Juglans mandshurica Maxim. fruits in insulin-resistant HepG2 cells and type 2 diabetic mice. J Food Biochem 42(3):e12518. https://doi.org/10.1111/jfbc.12518

    Article  Google Scholar 

  2. Akhtar S, Nasir JA, Ali A, Asghar M, Majeed R, Sarwar A (2022) Prevalence of type-2 diabetes and prediabetes in Malaysia: a systematic review and meta-analysis. PloS one 17(1):e0263139. https://doi.org/10.1371/journal.pone.0263139

    Article  Google Scholar 

  3. About Diabetes Malaysia (2022) https://m5.gs/ZXA3Nj. Accessed 03 September 2022

  4. Sekhon-Loodu S, Rupasinghe HV (2019) Evaluation of antioxidant, antidiabetic and antiobesity potential of selected traditional medicinal plants. Front nutr 6:53. https://doi.org/10.3389/fnut.2019.00053

    Article  Google Scholar 

  5. Karimi A, Azizi MH, Ahmadi Gavlighi H (2020) Fractionation of hydrolysate from corn germ protein by ultrafiltration: in vitro antidiabetic and antioxidant activity. Food Sci Nutr 8(5):2395–2405. https://doi.org/10.1002/fsn3.1529

    Article  Google Scholar 

  6. Supriyadi A, Arum LS, Nugraha AS, Ratnadewi AAI, Siswoyo TA (2019) Revealing antioxidant and antidiabetic potency of Melinjo (Gnetumgnemon) seed protein hydrolysate at different stages of seed maturation. Curr Res Nutr Food Sci 7(2):479–487. https://doi.org/10.12944/CRNFSJ.7.2.17

    Article  Google Scholar 

  7. Ezeigwe O, Ezeonu F, Igwilo I (2020) Antidiabetic property and antioxidant potentials of ethanol extract of Azadirachtaindica leaf in streptozotocin-induced diabetic rats. Bioscientist J 8(1):1–11

    Google Scholar 

  8. Mattila P, Mäkinen S, Eurola M, Jalava T, Pihlava J-M, Hellström J, Pihlanto A (2018) Nutritional value of commercial protein-rich plant products. Plant Foods Hum Nutr 73(2):108–115. https://doi.org/10.1007/s11130-018-0660-7

    Article  Google Scholar 

  9. Lee TH, Lee CH, Ong PY, Wong SL, Hamdan N, Ya’akob H, Azmi NA, Khoo SC, Zakaria ZA, Cheng KK (2022) Comparison of extraction methods of phytochemical compounds from white flower variety of Melastomamalabathricum. S Afr J Bot 148(2022):170–179. https://doi.org/10.1016/j.sajb.2022.04.026

    Article  Google Scholar 

  10. Kehinde BA, Sharma P (2020) Recently isolated antidiabetic hydrolysates and peptides from multiple food sources: a review. Crit Rev Food Sci Nutr 60(2):322–340. https://doi.org/10.1080/10408398.2018.1528206

    Article  Google Scholar 

  11. Gorguc A, Gencdag E, Yilmaz FM (2020) Bioactive peptides derived from plant origin by-products: biological activities and techno-functional utilizations in food developments–a review. Int Food Res J 136(2020):109504. https://doi.org/10.1016/j.foodres.2020.109504

    Article  Google Scholar 

  12. Suarez LM, Fan H, Zapata JE, Wu J (2021) Optimization of enzymatic hydrolysis for preparing cassava leaf hydrolysate with antioxidant activity. Food Bioproc Tech 14(12):2181–2194. https://doi.org/10.1007/s11947-021-02693-0

    Article  Google Scholar 

  13. Avilés-Gaxiola S, León-Félix J, Jiménez-Nevárez YB, Angulo-Escalante MA, Ramos-Payán R, Colado-Velázquez III J, Heredia JB (2021) Antioxidant and anti-inflammatory properties of novel peptides from Moringa oleifera. Lam leaves. S Afr J Bot 141(2021):466–473. https://doi.org/10.1016/j.sajb.2021.05.033

    Article  Google Scholar 

  14. Famuwagun AA, Alashi AM, Gbadamosi SO, Taiwo KA, Oyedele D, Adebooye OC, Aluko RE (2021) Effect of protease type and peptide size on the in vitro antioxidant, antihypertensive and anti-diabetic activities of eggplant leaf protein hydrolysates. Foods 10(5):1112. https://doi.org/10.3390/foods10051112

    Article  Google Scholar 

  15. Wang J, Wu T, Fang L, Liu C, Liu X, Li H, Shi J, Li M, Min W (2020) Anti-diabetic effect by walnut (Juglans mandshurica Maxim.)-derived peptide LPLLR through inhibiting α-glucosidase and α-amylase, and alleviating insulin resistance of hepatic HepG2 cells. J Funct Foods 69(2020):103944

    Article  Google Scholar 

  16. Coria TAV, Montalvo-Gonzalez E, Yahia EM, Obledo-Vazquez EN (2018) Annona muricata: a comprehensive review on its traditional medicinal uses, phytochemicals, pharmacological activities, mechanisms of action and toxicity. Arab J Chem 11(5):662–691. https://doi.org/10.1016/j.arabjc.2016.01.004

    Article  Google Scholar 

  17. Noorlidawati AHNR, Masdek NM (2016) Underutilized fruit species conservation in Malaysia. FFTC J Agric Pol 122:1107

    Google Scholar 

  18. Agu KC, Eluehike N, Ofeimun RO, Abile D, Ideho G, Ogedengbe MO, Onose PO, Elekofehinti OO (2019) Possible anti-diabetic potentials of Annona muricata (soursop): inhibition of α-amylase and α-glucosidase activities. Clin Phytoscience 5(1):21. https://doi.org/10.1186/s40816-019-0116-0

    Article  Google Scholar 

  19. Justino AB, Miranda NC, Franco RR, Martins MM, da Silva NM, Espindola FS (2018) Annona muricata Linn. leaf as a source of antioxidant compounds with in vitro antidiabetic and inhibitory potential against α-amylase, α-glucosidase, lipase, non-enzymatic glycation and lipid peroxidation. Biomed Pharmacother 100:83–92. https://doi.org/10.1016/j.biopha.2018.01.172

    Article  Google Scholar 

  20. Agu KC, Okolie PN (2017) Proximate composition, phytochemical analysis, and in vitro antioxidant potentials of extracts of Annona muricata (Soursop). Food Sci Nutr 5(5):1029–1036. https://doi.org/10.1002/fsn3.498

    Article  Google Scholar 

  21. Lee CH, Lee TH, Ong PY, Wong SL, Hamdan N, Elgharbawy AA, Azmi NA (2021) Integrated ultrasound-mechanical stirrer technique for extraction of total alkaloid content from Annona muricata. Process Biochem 109(2021):104–116. https://doi.org/10.1016/j.procbio.2021.07.006

    Article  Google Scholar 

  22. Feng Y-X, Ruan G-R, Jin F, Xu J, Wang F-J (2018) Purification, identification, and synthesis of five novel antioxidant peptides from Chinese chestnut (Castaneamollissima Blume) protein hydrolysates. LWT - Food Sci Technol 92(2018):40–46. https://doi.org/10.1016/j.lwt.2018.01.006

    Article  Google Scholar 

  23. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  Google Scholar 

  24. Liao X, Zhu Z, Wu S, Chen M, Huang R, Wang J, Wu Q, Ding Y (2020) Preparation of antioxidant protein hydrolysates from Pleurotusgeesteranus and their protective effects on H2O2 oxidative damaged PC12 cells. Mol 25(22):5408. https://doi.org/10.3390/molecules25225408

    Article  Google Scholar 

  25. Mudgil P, Kamal H, Yuen GC, Maqsood S (2018) Characterization and identification of novel antidiabetic and anti-obesity peptides from camel milk protein hydrolysates. Food Chem 259(2018):46–54. https://doi.org/10.1016/j.foodchem.2018.03.082

    Article  Google Scholar 

  26. Baba WN, Mudgil P, Kamal H, Kilari BP, Gan C-Y, Maqsood S (2021) Identification and characterization of novel α-amylase and α-glucosidase inhibitory peptides from camel whey proteins. J Dairy Sci 104(2):1364–1377. https://doi.org/10.3168/jds.2020-19271

    Article  Google Scholar 

  27. Cotabarren J, Rosso AM, Tellechea M, García-Pardo J, Rivera JL, Obregón WD, Parisi MG (2019) Adding value to the chia (Salvia hispanica L.) expeller: production of bioactive peptides with antioxidant properties by enzymatic hydrolysis with papain. Food Chem 274(2019):848–856. https://doi.org/10.1016/j.foodchem.2018.09.061

    Article  Google Scholar 

  28. Walters ME, Willmore WG, Tsopmo A (2020) Antioxidant, physicochemical, and cellular secretion of glucagon-like peptide-1 properties of oat bran protein hydrolysates. Antioxid 9(6):557. https://doi.org/10.3390/antiox9060557

    Article  Google Scholar 

  29. Gomes MHG, Kurozawa LE (2020) Improvement of the functional and antioxidant properties of rice protein by enzymatic hydrolysis for the microencapsulation of linseed oil. J Food Eng 267:109761. https://doi.org/10.1016/j.jfoodeng.2019.109761

    Article  Google Scholar 

  30. Anh TLQ, Hoa NTQ, Nguyen PDT, Thanh HV, Nguyen PB, Anh LTH, Dao DTA (2020) Soybean protein extraction by alcalase and flavourzyme, combining thermal pretreatment for enteral feeding product. Catal 10(8):829. https://doi.org/10.3390/catal10080829

    Article  Google Scholar 

  31. Lee CH, Lee TH, Ya’akob H, Wong S, Ben Jannet H (2019) Optimization of ultrasound-assisted extraction of total flavonoids content from the white flowering variety of Melastomamalabathricum. J Kejuruter 2(1):91–102. https://doi.org/10.17576/jkukm-2019-si2(1)-12

    Article  Google Scholar 

  32. Zhang X, Cao D, Sun X, Sun S, Xu N (2019) Preparation and identification of antioxidant peptides from protein hydrolysate of marine alga Gracilariopsislemaneiformis. J Appl Phycol 31(4):2585–2596. https://doi.org/10.1007/s10811-019-1746-9

    Article  Google Scholar 

  33. Singh TP, Siddiqi RA, Sogi DS (2019) Statistical optimization of enzymatic hydrolysis of rice bran protein concentrate for enhanced hydrolysate production by papain. LWT - Food Sci Technol 99(2019):77–83. https://doi.org/10.1016/j.lwt.2018.09.014

    Article  Google Scholar 

  34. Chen X, Huang W, Wang L (2022) Process optimization in the extract of perilla seed oil with plant protein hydrolysate complex enzyme. Food Sci Technol 42(e54722):1–8. https://doi.org/10.1590/fst.54722

    Article  Google Scholar 

  35. Gao D, Zhang F, Ma Z, Chen S, Ding G, Tian X, Feng R (2019) Isolation and identification of the angiotensin-I converting enzyme (ACE) inhibitory peptides derived from cottonseed protein: optimization of hydrolysis conditions. Int J Food Prop 22(1):1296–1309. https://doi.org/10.1080/10942912.2019.1640735

    Article  Google Scholar 

  36. Zhang H, Zhang Z, He D, Li S, Xu Y (2022) Optimization of enzymatic hydrolysis of perilla meal protein for hydrolysate with high hydrolysis degree and antioxidant activity. Mol 27(3):1079. https://doi.org/10.3390/molecules27031079

    Article  Google Scholar 

  37. Ding J, Liang R, Yang Y, Sun N, Lin S (2020) Optimization of pea protein hydrolysate preparation and purification of antioxidant peptides based on an in silico analytical approach. LWT - Food Sci Technol 123:109126. https://doi.org/10.1016/j.lwt.2020.109126

    Article  Google Scholar 

  38. Sierra-Lopera LM, Zapata-Montoya JE (2021) Optimization of enzymatic hydrolysis of red tilapia scales (Oreochromis sp.) to obtain bioactive peptides. Biotechnol Rep 30(2021):e00611. https://doi.org/10.1016/j.btre.2021.e00611

    Article  Google Scholar 

  39. Zhang Y, Shen Y, Zhang H, Wang L, Zhang H, Qian H, Qi X (2018) Isolation, purification and identification of two antioxidant peptides from water hyacinth leaf protein hydrolysates (WHLPH). Eur Food Res Technol 244(1):83–96. https://doi.org/10.1007/s00217-017-2941-z

    Article  Google Scholar 

  40. Agrawal H, Joshi R, Gupta M (2019) Purification, identification and characterization of two novel antioxidant peptides from finger millet (Eleusinecoracana) protein hydrolysate. Int Food Res J 120(2019):697–707. https://doi.org/10.1016/j.foodres.2018.11.028

    Article  Google Scholar 

  41. Liu F-F, Li Y-Q, Wang C-Y, Liang Y, Zhao X-Z, He J-X, Mo H-Z (2022) Physicochemical, functional and antioxidant properties of mung bean protein enzymatic hydrolysates. Food Chem 393(2022):133397. https://doi.org/10.1016/j.foodchem.2022.133397

    Article  Google Scholar 

  42. Wang R, Zhao H, Pan X, Orfila C, Lu W, Ma Y (2019) Preparation of bioactive peptides with antidiabetic, antihypertensive, and antioxidant activities and identification of α-glucosidase inhibitory peptides from soy protein. Food Sci Nutr 7(5):1848–1856. https://doi.org/10.1002/fsn3.1038

    Article  Google Scholar 

  43. Esfandi R, Seidu I, Willmore W, Tsopmo A (2022) Antioxidant, pancreatic lipase, and α-amylase inhibitory properties of oat bran hydrolyzed proteins and peptides. J Food Biochem 46(4):e13762. https://doi.org/10.1111/jfbc.13762

    Article  Google Scholar 

  44. Abbasi S, Moslehishad M, Salami M (2022) Antioxidant and alpha-glucosidase enzyme inhibitory properties of hydrolyzed protein and bioactive peptides of quinoa. Int J Biol Macromol 213(2022):602–609. https://doi.org/10.1016/j.ijbiomac.2022.05.189

    Article  Google Scholar 

  45. Ibrahim MA, Bester MJ, Neitz AW, Gaspar AR (2018) Structural properties of bioactive peptides with α-glucosidase inhibitory activity. Chem Biol Drug Des 91(2):370–379. https://doi.org/10.1111/cbdd.13105

    Article  Google Scholar 

Download references

Funding

This material is based upon work supported by the Malaysia Toray Science Foundation (grant number: R.J130000.7351.4B629).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chia Hau Lee, Norfadilah Hamdan or Ting Hun Lee.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, C.H., Hamdan, N., Ling, L.I. et al. Antioxidant and antidiabetic properties of bioactive peptides from soursop (Annona muricata) leaf biomass. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-03993-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-03993-5

Keywords

Navigation