Skip to main content
Log in

Comparative Investigation of Effect of Borax and Sodium Gluconate Retarders on Properties of Magnesium Phosphate Cement

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Retarder is an important component in magnesium phosphate cement (MPC), which plays a key role in adjusting the workability of the fresh paste. In this research, the effects of borax (BR) and sodium gluconate (SG) retarders on MPC properties, including workability, mechanical properties, and durability, were investigated comparatively. The hydration process, the phase assemblage, and the pore structure were analyzed based on microscopic tests such as hydration temperature, pH, XRD, and MIP. The results indicated that retarders could prolong the setting time, increase the fluidity, and promote the bond strength and the free-thaw cycle resistance. And the combined use of BR and SG retarders had a synergistic effect on improving the properties of MPC paste. The mechanism of action of BR and SG retarders was different: BR was effective in reducing the hydration rate, while SG was effective in improving the pore structure. These findings are expected to provide new insights for the theoretical research and engineering application of MPC retarders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Zhao, S.X.; Yan, H.; Zhang, H.S.; Wang, H.T.; Li, Y.T.; Hu, Z.D.; Sun, H.Q.: The effects of admixtures of inorganic hydrates on the hydration hardening of magnesium potassium phosphate cement. Adv. Cem. Res. 30(2), 83–92 (2018)

    Article  Google Scholar 

  2. Iyengar, S.R.; Al-Tabbaa, A.: Developmental study of a low-pH magnesium phosphate cement for environmental applications. Environ. Technol. 28(12), 1387–1401 (2007)

    Article  Google Scholar 

  3. Ribeiro, D.V.; Paula, G.R.; Morelli, M.R.: Use of microwave oven in the calcination of MgO and effect on the properties of magnesium phosphate cement. Constr. Build. Mater. 198, 619–628 (2019)

    Article  Google Scholar 

  4. Yang, N.; Shi, C.J.; Yang, J.M.; Chang, Y.: Research progresses in magnesium phosphate cement-based materials. J. Mater. Civil. Eng. 26(10) (2014)

  5. Li, Y.; Lin, H.; Hejazi, S.; Zhao, C.; Xie, M.Y.: The effect of low temperature phase change material of hydrated salt on the performance of magnesium phosphate cement. Constr. Build. Mater. 149, 272–278 (2017)

    Article  Google Scholar 

  6. Han, W.W.; Chen, H.S.; Li, X.Y.; Zhang, T.: Thermodynamic modeling of magnesium ammonium phosphate cement and stability of its hydration products. Cem. Concr. Res. 138 (2020)

  7. Hong, L.T.; Lubell, A.S.: Phosphate cement-based concretes containing silica fume. ACI Mater. J. 112(4), 587–596 (2015)

    Google Scholar 

  8. Feng, H.; Sheikh, M.N.; Hadi, M.N.S.; Gao, D.Y.; Zhao, J.: Mechanical properties of micro-steel fibre reinforced magnesium potassium phosphate cement composite. Constr. Build. Mater. 185, 423–435 (2018)

    Article  Google Scholar 

  9. Xing, F.; Ding, Z.; Li, Z.J.: Effect of additives on properties of magnesium phosphosilicate cement. Adv. Cem. Res. 23(2), 69–74 (2011)

    Article  Google Scholar 

  10. Lahalle, H.; Coumes, C.C.D.; Mercier, C.; Lambertin, D.; Cannes, C.; Delpech, S.; Gauffinet, S.: Influence of the w/c ratio on the hydration process of a magnesium phosphate cement and on its retardation by boric acid. Cem. Concr. Res. 109, 159–174 (2018)

    Article  Google Scholar 

  11. Ribeiro, D.V.; Paula, G.R.; Morelli, M.R.: Effect of boric acid content on the properties of magnesium phosphate cement. Constr. Build. Mater. 214, 557–564 (2019)

    Article  Google Scholar 

  12. Salomao, R.; Pandolfelli, V.C.: Citric acid as anti-hydration additive for magnesia containing refractory castables. Ceram Int. 37(6), 1839–1842 (2011)

    Article  Google Scholar 

  13. Yang, J.M.; Qian, C.X.: Effect of borax on hydration and hardening properties of magnesium and pottassium phosphate cement pastes. J. Wuhan Univ. Technol. 25(4), 613–618 (2010)

    Article  Google Scholar 

  14. Yue, L.; Bing, C.: Factors that affect the properties of magnesium phosphate cement. Constr. Build. Mater. 47, 977–983 (2013)

    Article  Google Scholar 

  15. Tan, H.B.; Zhang, X.; Guo, Y.L.; Ma, B.G.; Jian, S.W.; He, X.Y.; Zhi, Z.Z.; Liu, X.H.: Improvement in fluidity loss of magnesia phosphate cement by incorporating polycarboxylate superplasticizer. Constr. Build. Mater. 165, 887–897 (2018)

    Article  Google Scholar 

  16. Yang, J.; Su, Y.; He, X.; Tan, H.; Jiang, Y.; Zeng, L.; Strnadel, B.: Pore structure evaluation of cementing composites blended with coal by-products: calcined coal gangue and coal fly ash. Fuel Process. Technol. 181, 75–90 (2018)

    Article  Google Scholar 

  17. Zhang, B.; Liu, W.; Liu, X.: Scale-dependent nature of the surface fractal dimension for bi- and multi-disperse porous solids by mercury porosimetry. Appl. Surf. Sci. 253(3), 1349–1355 (2006)

    Article  Google Scholar 

  18. Zeng, Q.; Li, K.; Fen-Chong, T.; Dangla, P.: Surface fractal analysis of pore structure of high-volume fly-ash cement pastes. Appl. Surf. Sci. 257(3), 762–768 (2010)

    Article  Google Scholar 

  19. Asheghi, R.; Hosseini, S.A.; Saneie, M.; Shahri, A.A.: Updating the neural network sediment load models using different sensitivity analysis methods: a regional application. J. Hydroinf. 22(3), 562–577 (2020)

    Article  Google Scholar 

  20. Wang, H.; He, Y.; Pan, Y.; Yu, G.: Mechanical properties of magnesium potassium phosphate cement. Mag. Civ. Eng. 87(3), 59–65 (2019)

    Google Scholar 

  21. Qiao, F.; Chau, C.K.; Li, Z.J.: Calorimetric study of magnesium potassium phosphate cement. Mater. Struct. 45(3), 447–456 (2012)

    Article  Google Scholar 

  22. Trivedi, M.K.; Panda, P.; Sethi, K.K.; Jana, S.: Liquid chromatography tandem mass spectrometry and nuclear magnetic resonance spectroscopy of magnesium (II) gluconate solution. J. Solut. Chem. 46(4), 896–907 (2017)

    Article  Google Scholar 

  23. Ma, C.; Chen, B.: Properties of magnesium phosphate cement containing redispersible polymer powder. Constr. Build. Mater. 113, 255–263 (2016)

    Article  Google Scholar 

  24. Lesage, K.; Cizer, O.; Desmet, B.; Vantomme, J.; De Schutter, G.; Vandewalle, L.: Plasticising mechanism of sodium gluconate combined with PCE. Adv. Cem. Res. 27(3), 163–174 (2015)

    Article  Google Scholar 

  25. Ranjan, P.; Arora, S.; Sharma, G.S.; Sindhu, J.S.; Kansal, V.K.; Sangwan, R.B.: Bioavailability of calcium and physicochemical properties of calcium-fortified buffalo milk. Int. J. Dairy Technol. 58(3), 185–189 (2005)

    Article  Google Scholar 

  26. Zeng, Q.; Luo, M.; Pang, X.; Li, L.; Li, K.: Surface fractal dimension: an indicator to characterize the microstructure of cement-based porous materials. Appl. Surf. Sci. 282, 302–307 (2013)

    Article  Google Scholar 

  27. Yang, J.M.; Tang, Q.Q.; Wu, Q.S.; Li, X.H.; Sun, Z.X.: The effect of seawater curing on properties of magnesium potassium phosphate cement. Constr. Build. Mater. 141, 470–478 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The financial support from the Natural Science Foundation of Henan Province (162300410249) and the Open Research Fund Project of Yangtze River Scientific Research Institute (CKWV2018483/KY) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohai Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Z., Wang, Y., Liu, X. et al. Comparative Investigation of Effect of Borax and Sodium Gluconate Retarders on Properties of Magnesium Phosphate Cement. Arab J Sci Eng 47, 13187–13198 (2022). https://doi.org/10.1007/s13369-022-06762-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06762-0

Keywords

Navigation