Skip to main content

Advertisement

Log in

Elevated serum soluble CD14 levels in chronic HBV infection are significantly associated with HBV-related hepatocellular carcinoma

  • Original Article
  • Published:
Tumor Biology

Abstract

Hepatitis B virus (HBV) infection is a major cause of chronic liver diseases including hepatocellular carcinoma (HCC). CD14 and its soluble form sCD14 play important roles in immunity and are involved in the translocation of bacteria and their products which is related to the pathogenesis in chronic HBV infection. This study investigated serum sCD14 levels in HBV chronically infected patients with various clinical diseases. Serum sCD14 levels in HBV patients were significantly elevated compared with those of healthy controls. HCC patients had significantly highest levels of serum sCD14 across all the HBV-related diseases. Serum sCD14 levels significantly discriminated HCC from other HBV-related non-HCC diseases. The area under the receiver operating characteristic curve (AUC) of sCD14 levels for HCC was significantly higher in comparison with other HBV-related non-HCC diseases. The AUC of sCD14 for HCC (0.868, 95 % CI 0.791–0.946, P < 0.001) was higher than that of alpha-fetoprotein (0.660, 95 % CI 0.508–0.811, P = 0.039). Serum level of sCD14 was associated with the overall survival (OS) of HCC patients, with sCD14 levels >20 ng/mL being significantly related to poorer OS (P = 0.017). Multivariate regression showed that serum sCD14 level was an independent factor associated with the OS rates of HBV-related HCC patients (HR 2.544, 95 % CI 1.169–5.538, P = 0.019). HCC resection resulted in a significant decrease of sCD14 levels (P < 0.001). These findings suggest the potential role of sCD14 in the pathogenesis of chronic HBV infection, especially the development of HCC, and the potential usefulness of sCD14 as a biomarker for discriminating clinical diseases and predicting survival of HCC patients in chronic HBV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AFP:

Alpha-fetoprotein

ALT:

Alanine aminotransferase

ASC:

Asymptomatic HBV carrier status

AST:

Aspartate aminotransferase

AUC:

Area under the ROC curve

CH:

Chronic hepatitis

CT:

Computerized tomography

CI:

Confidence interval

CV:

Coefficient of variation

ELISA:

Enzyme-linked immunosorbent assay

HBV:

Hepatitis B virus

HCC:

Hepatocellular carcinoma

HCV:

Hepatitis C virus

HIV:

Human immunodeficiency virus

HR:

Hazard ratio

IL:

Interleukin

LC:

Liver cirrhosis

LPS:

Lipopolysaccharide

MDD:

Minimum detectable dose

MRI:

Magnetic resonance imaging

mCD14:

Membrane CD14

OS:

Overall survival

ROC curve:

Receiver operating characteristic curve

sCD14:

Soluble CD14

TLR:

Toll-like receptor

TNF-α:

Tumor necrosis factor-α

References

  1. European Association For The Study Of The Liver. EASL clinical practice guidelines: management of chronic hepatitis B virus infection. J Hepatol. 2012;57(1):167–85.

    Article  Google Scholar 

  2. Bertoletti A, Gehring AJ. The immune response during hepatitis B virus infection. J Gen Virol. 2006;87(Pt 6):1439–49.

    Article  CAS  PubMed  Google Scholar 

  3. Boni C, Fisicaro P, Valdatta C, Amadei B, Di Vincenzo P, Giuberti T, et al. Characterization of hepatitis B virus (HBV)-specific T-cell dysfunction in chronic HBV infection. J Virol. 2007;81(8):4215–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Molloy MJ, Bouladoux N, Belkaid Y. Intestinal microbiota: shaping local and systemic immune responses. Semin Immunol. 2012;24(1):58–66.

    Article  CAS  PubMed  Google Scholar 

  5. Ivanov II, Honda K. Intestinal commensal microbes as immune modulators. Cell Host Microbe. 2012;12(4):496–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kamada N, Seo SU, Chen GY, Núñez G. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol. 2013;13(5):321–35.

    Article  CAS  PubMed  Google Scholar 

  7. Littman DR, Pamer EG. Role of the commensal microbiota in normal and pathogenic host immune responses. Cell Host Microbe. 2011;10(4):311–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cesaro C, Tiso A, Del Prete A, Cariello R, Tuccillo C, Cotticelli G, et al. Gut microbiota and probiotics in chronic liver diseases. Dig Liver Dis. 2011;43(6):431–8.

    Article  PubMed  Google Scholar 

  9. Sandler NG, Koh C, Roque A, Eccleston JL, Siegel RB, Demino M, et al. Host response to translocated microbial products predicts outcomes of patients with HBV or HCV infection. Gastroenterology. 2011;141(4):1220–30. 1230.e1-3.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lin Y, Yu LX, Yan HX, Yang W, Tang L, Zhang HL, et al. Gut-derived lipopolysaccharide promotes T-cell-mediated hepatitis in mice through toll-like receptor 4. Cancer Prev Res (Phila). 2012;5(9):1090–102.

    Article  CAS  Google Scholar 

  11. Quigley EM, Stanton C, Murphy EF. The gut microbiota and the liver. Pathophysiological and clinical implications. J Hepatol. 2013;58(5):1020–7.

    Article  PubMed  Google Scholar 

  12. Lu H, Wu Z, Xu W, Yang J, Chen Y, Li L. Intestinal microbiota was assessed in cirrhotic patients with hepatitis B virus infection. Intestinal microbiota of HBV cirrhotic patients. Microb Ecol. 2011;61(3):693–703.

    Article  PubMed  Google Scholar 

  13. Chou HH, Chien WH, Wu LL, Cheng CH, Chung CH, Horng JH, et al. Age-related immune clearance of hepatitis B virus infection requires the establishment of gut microbiota. Proc Natl Acad Sci U S A. 2015;112(7):2175–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tobias PS, Ulevitch RJ. Lipopolysaccharide binding protein and CD14 in LPS dependent macrophage activation. Immunobiology. 1993;187(3–5):227–32.

    Article  CAS  PubMed  Google Scholar 

  15. Labeta MO, Landmann R, Obrecht JP, Obrist R. Human B cells express membrane-bound and soluble forms of the CD14 myeloid antigen. Mol Immunol. 1991;28(1–2):115–22.

    Article  CAS  PubMed  Google Scholar 

  16. Verhasselt V, Buelens C, Willems F, De Groote D, Haeffner-Cavaillon N, Goldman M. Bacterial lipopolysaccharide stimulates the production of cytokines and the expression of costimulatory molecules by human peripheral blood dendritic cells: evidence for a soluble CD14-dependent pathway. J Immunol. 1997;158(6):2919–25.

    CAS  PubMed  Google Scholar 

  17. Su GL. Lipopolysaccharides in liver injury: molecular mechanisms of Kupffer cell activation. Am J Physiol Gastrointest Liver Physiol. 2002;283(2):G256–65.

    Article  CAS  PubMed  Google Scholar 

  18. Beutler B. Tlr4: central component of the sole mammalian LPS sensor. Curr Opin Immunol. 2000;12(1):20–6.

    Article  CAS  PubMed  Google Scholar 

  19. Triantafilou M, Triantafilou K. Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster. Trends Immunol. 2002;23(6):301–4.

    Article  CAS  PubMed  Google Scholar 

  20. Landmann R, Ludwig C, Obrist R, Obrecht JP. Effect of cytokines and lipopolysaccharide on CD14 antigen expression in human monocytes and macrophages. J Cell Biochem. 1991;47(4):317–29.

    Article  CAS  PubMed  Google Scholar 

  21. Devitt A, Moffatt OD, Raykundalia C, Capra JD, Simmons DL, Gregory CD. Human CD14 mediates recognition and phagocytosis of apoptotic cells. Nature. 1998;392(6675):505–9.

    Article  CAS  PubMed  Google Scholar 

  22. Grunwald U, Fan X, Jack RS, Workalemahu G, Kallies A, Stelter F, et al. Monocytes can phagocytose Gram-negative bacteria by a CD14-dependent mechanism. J Immunol. 1996;157(9):4119–25.

    CAS  PubMed  Google Scholar 

  23. Haziot A, Chen S, Ferrero E, Low MG, Silber R, Goyert SM. The monocyte differentiation antigen, CD14, is anchored to the cell membrane by a phosphatidylinositol linkage. J Immunol. 1988;141(2):547–52.

    CAS  PubMed  Google Scholar 

  24. Ziegler-Heitbrock HW, Ulevitch RJ. CD14: cell surface receptor and differentiation marker. Immunol Today. 1993;14(3):121–5.

    Article  CAS  PubMed  Google Scholar 

  25. Bazil V, Strominger JL. Shedding as a mechanism of down-modulation of CD14 on stimulated human monocytes. J Immunol. 1991;147(5):1567–74.

    CAS  PubMed  Google Scholar 

  26. Bufler P, Stiegler G, Schuchmann M, Hess S, Krüger C, Stelter F, et al. Soluble lipopolysaccharide receptor (CD14) is released via two different mechanisms from human monocytes and CD14 transfectants. Eur J Immunol. 1995;25(2):604–10.

    Article  CAS  PubMed  Google Scholar 

  27. Pugin J, Schürer-Maly CC, Leturcq D, Moriarty A, Ulevitch RJ, Tobias PS. Lipopolysaccharide activation of human endothelial and epithelial cells is mediated by lipopolysaccharide-binding protein and soluble CD14. Proc Natl Acad Sci U S A. 1993;90(7):2744–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kirschning CJ, Wesche H, Merrill Ayres T, Rothe M. Human toll-like receptor 2 confers responsiveness to bacterial lipopolysaccharide. J Exp Med. 1998;188(11):2091–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bas S, Gauthier BR, Spenato U, Stingelin S, Gabay C. CD14 is an acute-phase protein. J Immunol. 2004;172(7):4470–9.

    Article  CAS  PubMed  Google Scholar 

  30. Su GL, Dorko K, Strom SC, Nüssler AK, Wang SC. CD14 expression and production by human hepatocytes. J Hepatol. 1999;31(3):435–42.

    Article  CAS  PubMed  Google Scholar 

  31. Hetherington CJ, Kingsley PD, Crocicchio F, Zhang P, Rabin MS, Palis J, et al. Characterization of human endotoxin lipopolysaccharide receptor CD14 expression in transgenic mice. J Immunol. 1999;162(1):503–9.

    CAS  PubMed  Google Scholar 

  32. Meuleman P, Steyaert S, Libbrecht L, Couvent S, Van Houtte F, Clinckspoor F, et al. Human hepatocytes secrete soluble CD14, a process not directly influenced by HBV and HCV infection. Clin Chim Acta. 2006;366(1–2):156–62.

    Article  CAS  PubMed  Google Scholar 

  33. Vanlandschoot P, Van Houtte F, Roobrouck A, Farhoudi A, Stelter F, Peterson DL, et al. LPS-binding protein and CD14-dependent attachment of hepatitis B surface antigen to monocytes is determined by the phospholipid moiety of the particles. J Gen Virol. 2002;83(Pt 9):2279–89.

    Article  CAS  PubMed  Google Scholar 

  34. Steyaert S, Vanlandschoot P, Van Vlierberghe H, Diepolder H, Leroux-Roels G. Soluble CD14 levels are increased and inversely correlated with the levels of hepatitis B surface antigen in chronic hepatitis B patients. J Med Virol. 2003;71(2):188–94.

    Article  CAS  PubMed  Google Scholar 

  35. Wu CC, Hsu CW, Chen CD, Yu CJ, Chang KP, Tai DI, et al. Candidate serological biomarkers for cancer identified from the secretomes of 23 cancer cell lines and the human protein atlas. Mol Cell Proteomics. 2010;9(6):1100–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mikuls TR, LeVan TD, Sayles H, Yu F, Caplan L, Cannon GW, et al. Soluble CD14 and CD14 polymorphisms in rheumatoid arthritis. J Rheumatol. 2011;38(12):2509–16.

    Article  CAS  PubMed  Google Scholar 

  37. Landmann R, Zimmerli W, Sansano S, Link S, Hahn A, Glauser MP, et al. Increased circulating soluble CD14 is associated with high mortality in gram-negative septic shock. J Infect Dis. 1995;171(3):639–44.

    Article  CAS  PubMed  Google Scholar 

  38. Ogawa Y, Imajo K, Yoneda M, Kessoku T, Tomeno W, Shinohara Y, et al. Soluble CD14 levels reflect liver inflammation in patients with nonalcoholic steatohepatitis. PLoS One. 2013;8(6):e65211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Roderburg C, Luedde T. The role of the gut microbiome in the development and progression of liver cirrhosis and hepatocellular carcinoma. Gut Microbes. 2014;5(4):441–5.

    Article  PubMed  Google Scholar 

  40. Jing YY, Han ZP, Sun K, Zhang SS, Hou J, Liu Y, et al. Toll-like receptor 4 signaling promotes epithelial-mesenchymal transition in human hepatocellular carcinoma induced by lipopolysaccharide. BMC Med. 2012;10:98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang L, Zhu R, Huang Z, Li H, Zhu H. Lipopolysaccharide-induced toll-like receptor 4 signaling in cancer cells promotes cell survival and proliferation in hepatocellular carcinoma. Dig Dis Sci. 2013;58(8):2223–36.

    Article  CAS  PubMed  Google Scholar 

  42. Liu WT, Jing YY, Yu GF, Han ZP, Yu DD, Fan QM, et al. Toll like receptor 4 facilitates invasion and migration as a cancer stem cell marker in hepatocellular carcinoma. Cancer Lett. 2015;358(2):136–43.

    Article  CAS  PubMed  Google Scholar 

  43. Llovet JM, Peña CE, Lathia CD, Shan M, Meinhardt G, Bruix J, et al. Plasma biomarkers as predictors of outcome in patients with advanced hepatocellular carcinoma. Clin Cancer Res. 2012;18(8):2290–300.

    Article  CAS  PubMed  Google Scholar 

  44. Medhat E, Salama H, Fouad H, Abd E, Haleem H, Said M, et al. Serum soluble CD14 in Egyptian patients with chronic hepatitis C: its relationship to disease progression and response to treatment. J Interferon Cytokine Res. 2015;35(7):563–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by funding from the National Natural Science Foundation of China (grant no. 81371798). The authors are indebted to Dr. Guoyu Zhang and Dr. Zhu Li for their help in this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qunying Han or Zhengwen Liu.

Ethics declarations

Conflicts of interest

None

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOC 34 kb)

Table S2

(DOC 31 kb)

Fig. S1

(DOC 87 kb)

Fig. S2

(DOC 114 kb)

Fig. S3

(DOC 100 kb)

Fig. S4

(DOC 65 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Zhu, Q., Yang, C. et al. Elevated serum soluble CD14 levels in chronic HBV infection are significantly associated with HBV-related hepatocellular carcinoma. Tumor Biol. 37, 6607–6617 (2016). https://doi.org/10.1007/s13277-015-4423-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-4423-x

Keywords

Navigation