Skip to main content

Advertisement

Log in

T11TS inhibits glioma angiogenesis by modulation of MMPs, TIMPs, with related integrin αv and TGF-β1 expressions

  • Research Article
  • Published:
Tumor Biology

Abstract

During glioma development, angiogenesis plays a crucial role in growth and vascularization of primary brain tumors. T11 target structure (T11TS), a bioactive molecule, has been documented as an anti-neoplastic agent in glioma-induced rats and also in human glioma in vitro. This novel molecule induces apoptosis of tumor cells by way of immune potentiation and impairs the glioma cell cycle, but its role in glioma angiogenesis has not been worked out in detail. Matrix metalloproteinases (MMPs) are enzymes promoting tumor angiogenesis by enzymatically remodeling the extracellular matrix and altering surface protein expression such as integrin αv and the matrix-bound proteins like TGF-β1. The present study was formulated to assess the efficacy of T11TS in the modulations of MMP-2 and −9 and their endogenous inhibitors (TIMP-1 and TIMP-2) as well as modulations of integrin αv and TGF-β1 in glioma-induced rats and also on the phenotypic markers of endothelial cells (CD31 and CD34). The parameters used were zymography, western blot, and flow cytometric analyses. It was observed that T11TS administration significantly downregulates the expression of matrix metalloproteinase-2 and −9 along with its ligand integrin αv and upregulates TIMP-1 and TIMP-2. In situ immunofluorescence and FACS results revealed that T11TS administration decreased the expression of the phenotypic markers (CD31/PECAM1, CD34), inhibiting the cell grip and also downregulating TGF-β1 expression (ELISA) from microglia cells in the glioma microenvironment. These results suggest that T11TS suppresses the expression of positive angiogenic growth factors and potentiates the expression of negative regulators in glioma-associated endothelial cells (ECs), resulting in an anti-angiogenic effect on glioma-induced angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Brenner A, Adler R, Rappolee A, Pedersen A, Werb Z. Genes for extracellular-matrix degrading metalloproteinases and their inhibitor, TIMP, are expressed during early mammalian development. Genes Dev. 1989;3:848–59.

    Article  PubMed  CAS  Google Scholar 

  2. Liotta A, Tryggvason K, Garbisa S, Hart I, Foltz M, Shafie S, et al. Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature. 1980;284:67–8.

    Article  PubMed  CAS  Google Scholar 

  3. Matrisian M. Metalloproteinases and their inhibitors in matrix remodeling. Trend Genet. 1990;6:121–5.

    Article  CAS  Google Scholar 

  4. Bramhall SR. The matrix metalloproteinases and their inhibitors in pancreatic cancer. From molecular science to clinical application. Inter J Pancreatol. 1997;2:11–2.

    Google Scholar 

  5. Davies B, Miles D, Happerfield L, Naylor M, Bobrow L, Rubens RD, et al. Activity of type IV collagenases in benign and malignant breast disease. B J Canc. 1993;67:1126–31.

    Article  CAS  Google Scholar 

  6. Nomura H, Sato H, Seiki M, Mai M, Okada Y. Expression of membrane type matrix metalloproteinase in human gastric carcinomas. Can Res. 1995;55:3263–6.

    CAS  Google Scholar 

  7. Tokuraku M, Sato H, Murakami S, Okada Y, Watanabe Y, Seiki M, et al. Activation of the precursor of gelatinase A/72 kDa typeIV collagenase/MMP-2 in lung carcinomas correlates with the expression of membrane-type matrix metalloproteinase (MT-MMP) and with lymph node metastasis. Int J Can. 1995;64:355–9.

    Article  CAS  Google Scholar 

  8. Baker H, Edwards R, Murphy G. Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J Cell Sci. 2002;115:3719–27.

    Article  PubMed  CAS  Google Scholar 

  9. Jiang Y, Goldberg ID, Shi YE. Complex roles of tissue inhibitors of metalloproteinases in cancer. Oncogene. 2002;21:2245–52.

    Article  PubMed  CAS  Google Scholar 

  10. Bafetti L, Young T, Itoh Y, Stack M. Intact vitronectin induces matrix metalloproteinase-2 and tissue inhibitor of metalloproteinases-2 expression and enhanced cellular invasion by melanoma cells. JBC. 1998;273:143–9.

    Article  CAS  Google Scholar 

  11. Dormond F, Paroz C, Ruegg C. NSAIDs inhibit αvβ3 integrin-mediated and Cdc42/Rac-dependent endothelial-cell spreading, migration and angiogenesis. Nat Medicine. 2001;7:1041–7.

    Article  CAS  Google Scholar 

  12. Felding-Habermann B, O'Toole T, Smith W, Fransvea E, Ruggeri M, Ginsberg H, et al. Integrin activation controls metastasis in human breast cancer. Proc Natl Acad Sci U S A. 2001;98:1853–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Brooks C. Role of integrin in angiogenesis. Euro J Canc. 1996;32:2423–9.

    Article  Google Scholar 

  14. Silletti S, Kessler T, Goldberg J, Boger D, Cheresh D. Disruption of matrix metalloproteinase 2 binding to integrin αvβ3 by an organic molecule inhibits angiogenesis and tumor growth in vivo. Proc Natl Acad Sci U S A. 2001;98:119–24.

    PubMed Central  PubMed  CAS  Google Scholar 

  15. Fransvea E, Mazzocca A, Antonaci S, Giannelli G. Targeting transforming growth factor (TGF)-β1 inhibits activation of integrin R and blocks vascular invasion in hepatocellular carcinoma. Hepatology. 2009;49:839–50.

    Article  PubMed  CAS  Google Scholar 

  16. Madri A, Pratt B, Tucker M. Phenotypic modulation of endothelial cells by transforming growth factor beta depends upon the composition and organization of the extracellular matrix. J Cell Biol. 1988;106:1375–84.

    Article  PubMed  CAS  Google Scholar 

  17. Behzadian A, Li W, Windsor J, Ghaly N, Caldwell B. TGF-β1 increases retinal endothelial cell permeability by increasing MMP-9: possible role of glial cells in endothelial barrier function. IOVS. 2001;42:853–9.

    CAS  Google Scholar 

  18. Derynck R, Akhurst RJ, Balmain A. TGF-β1- signaling in tumor suppression and cancer progression. N Genetic. 2001;29:117–29.

    Article  CAS  Google Scholar 

  19. Mukherjee J, Sarkar S, Ghosh A, Duttagupta AK, Chaudhuri S, Chaudhuri S, et al. Immunotherapeutic effects of T11TS/SLFA-3 against nitroso compound mediated neural genotoxicity. Toxicol Letters. 2004;150:239–57.

    Article  CAS  Google Scholar 

  20. Sarkar S, Begum Z, Dutta S, Chaudhuri S, Chaudhuri S. Sheep form of leucocyte function antigen-3 (T 11TS) exerts immunostimulatory and anti-tumor activity against experimental brain tumor: a new approach to biological response modifier therapy. J Exp and Clin Can Res. 2002;21(1):95–106.

    CAS  Google Scholar 

  21. Kumar P, Acharya S, Chatterjee S, Chaudhuri S, Singh KM, Chaudhuri S, et al. Immunomodulatory role of TIITS in respect to cytotoxic lymphocytes in four grades of human glioma. Cellu Immunol. 2012;l276:176–86.

    Article  CAS  Google Scholar 

  22. Ghosh A, Bhattacharya M, Sarkar P, Acharya S, Chaudhuri S. T11 target structure exerts effector function by activating immune cells in CNS against glioma where cytokine modulation provide favorable microenvironment. Indian J Exp Biol. 2010;48(9):879–88.

    PubMed  CAS  Google Scholar 

  23. Bhattacharjee M, Acharya S, Ghosh A, Sarkar P, Chatterjee S, Chaudhuri S, et al. Bax and Bid act in synergy to bring about T11TS mediated glioma apoptosis via the release of mitochondrial cytochrome c and subsequent caspase activation. Inter Immunol. 2008;20:1489–505.

    Article  CAS  Google Scholar 

  24. Acharya S, Chatterjee S, Kumar P, Bhattacharjee M, Chaudhuri S, Chaudhuri S, et al. Induction of G1 arrest in glioma cells by T11TS is associated with upregulation of Cip1/Kip1 and concurrent down regulation of cyclin D (1 and 3). Anticanc Drugs. 2010;21:53–64.

    Article  CAS  Google Scholar 

  25. Acharya, S. Studying the expression of pivotal proteins playing central role in the cell survival and cell death cascades in experimental brain tumor model with and without T11TS. 2009. Ph.D. thesis, Dept. of Zoology of Maulana Azad College, Kolkata, 1–241.

  26. Bhattacharya D, Singh KM, Chaudhuri S, Acharya S, Basu KA, Chaudhuri S, et al. T11TS impedes glioma angiogenesis by inhibiting VEGF signaling and pro-survival PI3K/Akt/eNOS pathway with concomitant upregulation of PTEN in brain endothelial cells. J Neurooncol. 2013;113(1):13–25.

    Article  PubMed  CAS  Google Scholar 

  27. Hynes RO. A reevaluation of integrins as regulators of angiogenesis. Nat Med. 2002;8:918–21.

    Article  PubMed  CAS  Google Scholar 

  28. Eliceiri BP, Cheresh DA. Adhesion events in angiogenesis. Curr Opin Cell Biol. 2001;13:563–8.

    Article  PubMed  CAS  Google Scholar 

  29. Mukherjee J, Sarkar S, Begurn Z, Dutta S, Ghosh A, Chaudhuri S, et al. Preclinical changes in immunoreactivity and cellular architecture during the progressive development of intracranial neoplasm and its immunotherapeutic schedule with a novel biological response modifier, the T11TS/S-LFA-3. Asia Paci J Can Prev. 2002;3:325–37.

    Google Scholar 

  30. Abbott NJ, Hughes CCW, Revest PA, Greenwood J. Development and characterization of a rat brain capillary endothelial culture: towards an in vitro blood–brain barrier. J Cell Sci. 1992;103:23–37.

    PubMed  CAS  Google Scholar 

  31. Beijnum J, Mat R, Castermans K, Linden E, Griffioen AW. Isolation of endothelial cells from fresh tissues. Nat Prot. 2008;3(6):1085–91.

    Article  CAS  Google Scholar 

  32. Begum Z, Ghosh A, Sarkar S, Mukherjee J, Mazumdar M, Chaudhuri S, et al. Documentation of immune profile of microglia through cell surface marker study in glioma model primed by a novel cell surface glycopeptide T11TS/SLFA-3. J Glycoconj. 2004;20:515–23.

    Article  CAS  Google Scholar 

  33. Nishikawa R, Cheng SY, Nagashima R, Huang HJ, Cavenee WK, Matsutani M, et al. Expression of vascular endothelial growth factor in human brain tumors. Acta Neuropathol. 1998;96:453–62.

    Article  PubMed  CAS  Google Scholar 

  34. Oehring RD, Miletic M, Valter M, Pietsch T, Neumann J, Fimmers R, et al. Vascular endothelial growth factor (VEGF) in astrocytic gliomas—a prognostic factor? J Neuro Oncol. 1999;45:117–25.

    Article  CAS  Google Scholar 

  35. Pietsch T, Valter MM, Wolf HK, Von DA, Huang HJ, Cavenee WK, et al. Expression and distribution of vascular endothelial growth factor protein in human brain tumors. Acta Neuropathol. 1997;93:109–17.

    Article  PubMed  CAS  Google Scholar 

  36. Brooks C, Stromblad S, Sanders C, Von SL, Aimes T, Stetler-Stevenson W, et al. Localization of matrix metalloproteniase MMP-2 to the surface of invasive cells by interaction with integrin αvβ3. Cell. 1996;85:683–93.

    Article  PubMed  CAS  Google Scholar 

  37. Seftor E, Seftor EA, Stetler Stevensoon WG, Hendix MJ. The 72kDa type IV collagenase I modulated via differential expression of αvβ3 and α5β1 integrins during human melanoma cell invasion. Can Res. 1993;53:3411–5.

    CAS  Google Scholar 

  38. Brooks PC, Clark R, Cheresh DA. Requirement of vascular integrin αvβ3 for angiogenesis. Science. 1994;264:569–71.

    Article  PubMed  CAS  Google Scholar 

  39. Kim S, Bell K, Mousa SA, Varner JA. Regulation of angiogenesis in vivo by ligation of integrin αvβ5 with the central cell-binding domain of fibronectin. A J Pathol. 2000;156(4):1345–62.

    Article  CAS  Google Scholar 

  40. Wong C, Wiedle G, Ballestrem C, Wehrle-Haller B, Etteldorf S, Bruckner M. PECAM-1/CD31 trans-homophilic binding at the intercellular junctions is independent of its cytoplasmic domain: evidence for heterophilic interaction with integrin αvβ3 in Cis. Mol Biol Cell. 2000;11:3109–312.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Gladson CL. Expression of integrin αvβ3 in small blood vessels of glioblastoma tumors. J Neuro Pathol Exp Neuro. 1996;55(11):1143–9.

    Article  CAS  Google Scholar 

  42. Seo D, Guedez L, Wingfield P, Wei B, Stetler-Stevenso W. TIMP-2 mediated inhibition of angiogenesis: an MMP-independent mechanism. Cell. 2003;114:171–80.

    Article  PubMed  CAS  Google Scholar 

  43. Bergers G, Brekken R, McMahon G. Matrixmetalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol. 2000;2:737–44.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Mira R, Lacalle R, Buesa J. Secreted MMP9 promotes angiogenesis more efficiently than constitutive active MMP9 bound to the tumor cell surface. J Cell Sci. 2003;117:1847–56.

    Article  CAS  Google Scholar 

  45. Fridman R, Toth M, Pena D, Mobashery S. Activation of progelatinase B (MMP-9) by gelatinase A (MMP-2). Can Res. 1995;55(12):2548–55.

    CAS  Google Scholar 

  46. Pertovaara L, Kaipainen A, Mustonen T, Orpana A, Ferrara N, Saksela O, et al. Vascular endothelial growth factor is induced in response to transforming growth factor-beta in fibroblastic and epithelial cells. J Biol Chem. 1994;269:6271–4.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported a research grant from DST Govt. of India [F. No.SR/SO/HS/-16/2007, 2008]. The authors are also grateful to Dr. Sirshendu Chatterjee for significant technical support.

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swapna Chaudhuri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(JPEG 70 kb)

High resolution image (TIFF 358 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, M.K., Bhattacharya, D., Chaudhuri, S. et al. T11TS inhibits glioma angiogenesis by modulation of MMPs, TIMPs, with related integrin αv and TGF-β1 expressions. Tumor Biol. 35, 2231–2246 (2014). https://doi.org/10.1007/s13277-013-1296-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-013-1296-8

Keywords

Navigation