Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A reevaluation of integrins as regulators of angiogenesis

Pharmacological agents directed against the integrins αvβ3 and αvβ5 have been reported to inhibit angiogenesis. However, genetic ablations of the genes encoding these integrins fail to block angiogenesis and in some cases even enhance it. This apparent paradox suggests the hypotheses that these integrins are negative regulators of angiogenesis and that the drugs targeting them may be acting as agonists rather than antagonists.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: αvβ3 as a mediator of antiangiogenic regulators.
Figure 2: Trans-dominant inhibition of proangiogenic integrins.
Figure 3: Three models for endothelial apoptosis.

References

  1. Hynes, R.O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 11–25 (1992).

    Article  CAS  Google Scholar 

  2. Giancotti, F.G. & Ruoslahti, E. Integrin signaling. Science 285, 1028–1032 (1999).

    Article  CAS  Google Scholar 

  3. van der Flier, A. & Sonnenberg, A. Function and interactions of integrins. Cell Tissue Res. 305, 285–298 (2001).

    Article  CAS  Google Scholar 

  4. Hynes, R.O., Bader, B.L. & Hodivala-Dilke, K. Integrins in vascular development. Braz. J. Med. Biol. Res. 32, 501–510 (1999).

    Article  CAS  Google Scholar 

  5. Eliceiri, B.P. & Cheresh, D.A. The role of α-v integrins during angiogenesis: insights into potential mechanisms of action and clinical development. J. Clin. Invest. 103, 1227–1230 (1999).

    Article  CAS  Google Scholar 

  6. Eliceiri, B.P. & Cheresh, D.A. Adhesion events in angiogenesis. Curr. Opin. Cell Biol. 13, 563–568 (2001).

    Article  CAS  Google Scholar 

  7. Brooks, P.C., Clark, R.A. & Cheresh, D.A. Requirement of vascular integrin αv β3 for angiogenesis. Science 264, 569–571 (1994).

    Article  CAS  Google Scholar 

  8. Brooks, P.C. et al. Integrin αv β3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79, 1157–1164 (1994).

    Article  CAS  Google Scholar 

  9. Brooks, P.C. et al. Antiintegrin αv β3 blocks human breast cancer growth and angiogenesis in human skin. J. Clin. Invest. 96, 1815–1822 (1995).

    Article  CAS  Google Scholar 

  10. Friedlander, M. et al. Definition of two angiogenic pathways by distinct αv integrins. Science 270, 1500–1502 (1995).

    Article  CAS  Google Scholar 

  11. Friedlander, M. et al. Involvement of integrins αv β3 and αv β5 in ocular neovascular diseases. Proc. Natl. Acad. Sci. USA 93, 9764–9769 (1996).

    Article  CAS  Google Scholar 

  12. Hammes, H.P., Brownlee, M., Jonczyk, A., Sutter, A. & Preissner, K.T. Subcutaneous injection of a cyclic peptide antagonist of vitronectin receptor-type integrins inhibits retinal neovascularization. Nature Med. 2, 529–533 (1996).

    Article  CAS  Google Scholar 

  13. Gutheil, J.C. et al. Targeted antiangiogenic therapy for cancer using Vitaxin: a humanized monoclonal antibody to the integrin αvβ3. Clin. Cancer Res. 6, 3056–3061 (2000).

    CAS  PubMed  Google Scholar 

  14. Fassler, R. & Meyer, M. Consequences of lack of β1 integrin gene expression in mice. Genes Dev. 9, 1896–1908 (1995).

    Article  CAS  Google Scholar 

  15. Stephens, L.E. et al. Deletion of β1 integrins in mice results in inner cell mass failure and peri-implantation lethality. Genes Dev. 9, 1883–1895 (1995).

    Article  CAS  Google Scholar 

  16. Bloch, W. et al. β1 integrin is essential for teratoma growth and angiogenesis. J. Cell Biol. 139, 265–278 (1997).

    Article  CAS  Google Scholar 

  17. Hodivala-Dilke, K.M. et al. β3-integrin-deficient mice are a model for Glanzmann thrombasthenia showing placental defects and reduced survival. J. Clin. Invest. 103, 229–238 (1999).

    Article  CAS  Google Scholar 

  18. Huang, X., Griffiths, M., Wu, J., Farese, R.V. Jr., & Sheppard, D. Normal development, wound healing, and adenovirus susceptibility in β5-deficient mice. Mol. Cell Biol. 20, 755–759 (2000).

    Article  CAS  Google Scholar 

  19. Huang, X.Z. et al. Inactivation of the integrin β6 subunit gene reveals a role of epithelial integrins in regulating inflammation in the lung and skin. J. Cell Biol. 133, 921–928 (1996).

    Article  CAS  Google Scholar 

  20. Reynolds, L.E. et al. Enhanced pathological angiogenesis in mice lacking β3 integrin or β3 and β5 integrins. Nature Med. 8, 27–34 (2002).

    Article  CAS  Google Scholar 

  21. Bader, B.L., Rayburn, H., Crowley, D. & Hynes, R.O. Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all αv integrins. Cell 95, 507–519 (1998).

    Article  CAS  Google Scholar 

  22. McCarty, J.H. et al. Defective associations between blood vessels and developing neuronal parenchyma lead to cerebral hemorrhage in mice lacking α-v integrins. Mol. Cell Biol., in press (2002).

  23. Zhu, J. et al. β8 integrins are required for vascular morphogenesis in mouse embryos. Development 129, 2891–2903 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. McHugh, K.P. et al. Mice lacking β3 integrins are osteosclerotic because of dysfunctional osteoclasts. J. Clin. Invest. 105, 433–440 (2000).

    Article  CAS  Google Scholar 

  25. Horton, M.A. Integrin antagonists as inhibitors of bone resorption: implications for treatment. Proc. Nutr. Soc. 60, 275–281 (2001).

    CAS  PubMed  Google Scholar 

  26. George, E.L., Georges-Labouesse, E.N., Patel-King, R.S., Rayburn, H. & Hynes, R.O. Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119, 1079–1091 (1993).

    CAS  PubMed  Google Scholar 

  27. Yang, J.T., Rayburn, H. & Hynes, R.O. Embryonic mesodermal defects in α5 integrin-deficient mice. Development 119, 1093–1105 (1993).

    CAS  PubMed  Google Scholar 

  28. Kim, S., Bell, K., Mousa, S.A. & Varner, J.A. Regulation of angiogenesis in vivo by ligation of integrin α5β1 with the central cell-binding domain of fibronectin. Am. J. Pathol. 156, 1345–1362 (2000).

    Article  CAS  Google Scholar 

  29. Senger, D.R. et al. Angiogenesis promoted by vascular endothelial growth factor: regulation through α1β1 and α2β1 integrins. Proc. Natl. Acad. Sci. USA 94, 13612–13617 (1997).

    Article  CAS  Google Scholar 

  30. Pozzi, A. et al. Elevated matrix metalloprotease and angiostatin levels in integrin α1 knockout mice cause reduced tumor vascularization. Proc. Natl. Acad. Sci. USA 97, 2202–2207 (2000).

    Article  CAS  Google Scholar 

  31. Miranti, C.K. & Brugge, J.S. Sensing the environment: a historical perspective on integrin signal transduction. Nature Cell Biol. 4, E83–E90 (2002).

    Article  CAS  Google Scholar 

  32. Du, X. et al. Long-range propagation of conformational changes in integrin αIIb β3. J. Biol. Chem. 268, 23087–23092 (1993).

    CAS  PubMed  Google Scholar 

  33. Diaz-Gonzalez, F., Forsyth, J., Steiner, B. & Ginsberg, M.H. Trans-dominant inhibition of integrin function. Mol. Biol. Cell 7, 1939–1951 (1996).

    Article  CAS  Google Scholar 

  34. Legler, D.F., Wiedle, G., Ross, F.P. & Imhof, B.A. Superactivation of integrin αvβ3 by low antagonist concentrations. J. Cell Sci. 114, 1545–1553 (2001).

    CAS  PubMed  Google Scholar 

  35. Peter, K., Schwarz, M., Nordt, T. & Bode, C. Intrinsic activating properties of GP IIb/IIIa blockers. Thromb. Res. 103 (Suppl. 1), S21–S27 (2001).

    Article  CAS  Google Scholar 

  36. Lawler, J. The functions of thrombospondin-1 and -2. Curr. Opin. Cell Biol. 12, 634–640 (2000).

    Article  CAS  Google Scholar 

  37. Adams, J.C. Thrombospondins: multifunctional regulators of cell interactions. Annu. Rev. Cell Dev. Biol. 17, 25–51 (2001).

    Article  CAS  Google Scholar 

  38. Rodriguez-Manzaneque, J.C. et al. Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc. Natl. Acad. Sci. USA 98, 12485–12490 (2001).

    Article  CAS  Google Scholar 

  39. Jimenez, B. et al. Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med 6, 41–48 (2000).

    Article  CAS  Google Scholar 

  40. Bergers, G. et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nature Cell Biol. 2, 737–744 (2000).

    Article  CAS  Google Scholar 

  41. Petitclerc, E. et al. New functions for non-collagenous domains of human collagen type IV. Novel integrin ligands inhibiting angiogenesis and tumor growth in vivo. J. Biol. Chem. 275, 8051–8061 (2000).

    Article  CAS  Google Scholar 

  42. Maeshima, Y., Colorado, P.C. & Kalluri, R. Two RGD-independent αvβ3 integrin binding sites on tumstatin regulate distinct anti-tumor properties. J. Biol. Chem. 275, 23745–23750 (2000).

    Article  CAS  Google Scholar 

  43. Tarui, T., Miles, L.A. & Takada, Y. Specific interaction of angiostatin with integrin α(v)β(3) in endothelial cells. J. Biol. Chem. 276, 39562–39568 (2001).

    Article  CAS  Google Scholar 

  44. Rehn, M. et al. Interaction of endostatin with integrins implicated in angiogenesis. Proc. Natl. Acad. Sci. USA 98, 1024–1029 (2001).

    Article  CAS  Google Scholar 

  45. Maeshima, Y. et al. Tumstatin, an endothelial cell-specific inhibitor of protein synthesis. Science 295, 140–143 (2002).

    Article  CAS  Google Scholar 

  46. Brooks, P.C. et al. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin αv β3. Cell 85, 683–693 (1996).

    Article  CAS  Google Scholar 

  47. Brooks, P.C., Silletti, S., von Schalscha, T.L., Friedlander, M. & Cheresh, D.A. Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity. Cell 92, 391–400 (1998).

    Article  CAS  Google Scholar 

  48. Blystone, S.D., Slater, S.E., Williams, M.P., Crow, M.T. & Brown, E.J. A molecular mechanism of integrin crosstalk: αvβ3 suppression of calcium/calmodulin-dependent protein kinase II regulates α5β1 function. J. Cell Biol. 145, 889–897 (1999).

    Article  CAS  Google Scholar 

  49. Simon, K.O., Nutt, E.M., Abraham, D.G., Rodan, G.A. & Duong, L.T. The αvβ3 integrin regulates α5β1-mediated cell migration toward fibronectin. J. Biol. Chem. 272, 29380–29389 (1997).

    Article  CAS  Google Scholar 

  50. Bilato, C. et al. The inhibition of vascular smooth muscle cell migration by peptide and antibody antagonists of the αvβ3 integrin complex is reversed by activated calcium/calmodulin- dependent protein kinase II. J. Clin. Invest. 100, 693–704 (1997).

    Article  CAS  Google Scholar 

  51. Kim, S., Harris, M. & Varner, J.A. Regulation of integrin αvβ3-mediated endothelial cell migration and angiogenesis by integrin α5β1 and protein kinase A. J. Biol. Chem. 275, 33920–33928 (2000).

    Article  CAS  Google Scholar 

  52. Schwartz, M.A. & Ginsberg, M.H. Networks and crosstalk: integrin signalling spreads. Nature Cell Biol. 4, E65–E68 (2002).

    Article  CAS  Google Scholar 

  53. Meredith, J.E., Jr., Fazeli, B. & Schwartz, M.A. The extracellular matrix as a cell survival factor. Mol. Biol. Cell 4, 953–961 (1993).

    Article  CAS  Google Scholar 

  54. Frisch, S.M. & Screaton, R.A. Anoikis mechanisms. Curr. Opin. Cell Biol. 13, 555–562 (2001).

    Article  CAS  Google Scholar 

  55. Buckley, C.D. et al. RGD peptides induce apoptosis by direct caspase-3 activation. Nature 397, 534–539 (1999).

    Article  CAS  Google Scholar 

  56. Adderley, S.R. & Fitzgerald, D.J. Glycoprotein IIb/IIIa antagonists induce apoptosis in rat cardiomyocytes by caspase-3 activation. J. Biol. Chem. 275, 5760–5766 (2000).

    Article  CAS  Google Scholar 

  57. Stupack, D.G., Puente, X.S., Boutsaboualoy, S., Storgard, C.M. & Cheresh, D.A. Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins. J. Cell Biol. 155, 459–470 (2001).

    Article  CAS  Google Scholar 

  58. Cheresh, D.A. & Stupack, D.G. Integrin-mediated death: an explanation of the integrin-knockout phenotype? Nat. Med. 8, 193–194 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank J. Lively, J. McCarty, D. Taverna and K. Hodivala-Dilke for valuable discussions and G. Hendrey for manuscript preparation. Work in the author's laboratory was supported by the Howard Hughes Medical Institute (HHMI) and by grants from the National Institutes of Health (RO1CA17007 and PO1 HL66105). R.O. Hynes is a HHMI investigator.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hynes, R. A reevaluation of integrins as regulators of angiogenesis. Nat Med 8, 918–921 (2002). https://doi.org/10.1038/nm0902-918

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0902-918

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing