Skip to main content
Log in

Food Waste as a Feedstock for Fungal Biosynthesis of Amylases and Proteases

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

This work aimed the food waste (FW) valorization by the production of fungal enzymes in solid-state fermentation (SSF) and a hydrolysate with the potential to obtain products with high added value.

Methods

An original bioprocess based on Rhizopus oligosporus cultured by SSF using medium consisting of FW, sugarcane bagasse (SCB), wheat bran (WB), and corn steep liquor (CSL) utilizing a cell-substrate recycling system was implemented.

Results

The highest outcomes were achieved using FW as the main substrate and the strategy of one cell recycling round. The best condition for amylase production (260.9 U/g) was the blend FW 50%, SCB 10%, WB 40% supplemented with a salt solution. For the highest protease level (665.5 U/g) the same mixture was supplemented by 20% CSL. Hydrolysis of FW with the enzymatic extract from the best specified blend produced 47.10 g/L of reducing sugars.

Conclusion

This bioprocess showed to be cost-effective, technically not demanding, and could be scaled up successfully for commercial goals.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. FAO: Food and Agriculture Organization of the United Nations

  2. Matsakas, L., Kekos, D., Loizidou, M., Christakopoulos, P.: Utilization of household food waste for the production of ethanol at high dry material content. Biotechnol. Biofuels 7, 4 (2014). https://doi.org/10.1186/1754-6834-7-4

    Article  Google Scholar 

  3. Tsang, Y.F., Kumar, V., Samadar, P., Yang, Y., Lee, J., Ok, Y.S., Song, H., Kim, K.-H., Kwon, E.E., Jeon, Y.J.: Production of bioplastic through food waste valorization. Environ. Int. 127, 625–644 (2019). https://doi.org/10.1016/j.envint.2019.03.076

    Article  Google Scholar 

  4. Research and Markets: Enzymes Market Type, Source, Reaction Type, and Application—Global Opportunity Analysis and Industry Forecast, 2017–2024

  5. Mordor Intelligence: Industrial Enzymes Market—Segmented by Type, Application, and Geography—Growth, Trends, and Forecast (2018–2023)

  6. Lolasi, F., Amiri, H., Asadollahi, M.A., Karimi, K.: Using sweet sorghum bagasse for production of amylases required for its grain hydrolysis via a biorefinery platform. Ind. Crops Prod. 125, 473–481 (2018). https://doi.org/10.1016/j.indcrop.2018.08.063

    Article  Google Scholar 

  7. Frassatto, P.A.C., Casciatori, F.P., Thoméo, J.C., Gomes, E., Boscolo, M., Silva, R.: β-Glucosidase production by Trichoderma reesei and Thermoascus aurantiacus by solid state cultivation and application of enzymatic cocktail for saccharification of sugarcane bagasse. Biomass Convers. Biorefin. (2020). https://doi.org/10.1007/s13399-020-00608-1

    Article  Google Scholar 

  8. Casciatori, F.P., Bück, A., Thoméo, J.C., Tsotsas, E.: Two-phase and two-dimensional model describing heat and water transfer during solid-state fermentation within a packed-bed bioreactor. Chem. Eng. J. 287, 103–116 (2016). https://doi.org/10.1016/j.cej.2015.10.108

    Article  Google Scholar 

  9. Vattem, D.A., Lin, Y.T., Labbe, R.G., Shetty, K.: Antimicrobial activity against select food-borne pathogens by phenolic antioxidants enriched in cranberry pomace by solid-state bioprocessing using the food grade fungus Rhizopus oligosporus. Process Biochem. 39, 1939–1946 (2004). https://doi.org/10.1016/j.procbio.2003.09.032

    Article  Google Scholar 

  10. Ma, Y., Cai, W., Liu, Y.: An integrated engineering system for maximizing bioenergy production from food waste. Appl. Energy 206, 83–89 (2017). https://doi.org/10.1016/j.apenergy.2017.08.190

    Article  Google Scholar 

  11. Prückler, M., Siebenhandl-Ehn, S., Apprich, S., Höltinger, S., Haas, C., Schmid, E., Kneifel, W.: Wheat bran-based biorefinery 1: composition of wheat bran and strategies of functionalization. LWT-Food Sci. Technol. 56, 211–221 (2014). https://doi.org/10.1016/j.lwt.2013.12.004

    Article  Google Scholar 

  12. Apprich, S., Tirpanalan, Ö., Hell, J., Reisinger, M., Böhmdorfer, S., Siebenhandl-Ehn, S., Novalin, S., Kneifel, W.: Wheat bran-based biorefinery 2: valorization of products. LWT-Food Sci. Technol. 56, 222–231 (2014). https://doi.org/10.1016/j.lwt.2013.12.003

    Article  Google Scholar 

  13. Escaramboni, B., Fernández Núñez, E.G., Carvalho, A.F.A., de Oliva Neto, P.: Ethanol biosynthesis by fast hydrolysis of cassava bagasse using fungal amylases produced in optimized conditions. Ind. Crops Prod. 112, 368–377 (2018). https://doi.org/10.1016/j.indcrop.2017.12.004

    Article  Google Scholar 

  14. FAOSTAT: Food and Agriculture Organization of the United Nations.

  15. Ávila, P.F., Forte, M.B.S., Goldbeck, R.: Evaluation of the chemical composition of a mixture of sugarcane bagasse and straw after different pretreatments and their effects on commercial enzyme combinations for the production of fermentable sugars. Biomass Bioenergy 116, 180–188 (2018). https://doi.org/10.1016/j.biombioe.2018.06.015

    Article  Google Scholar 

  16. Barchi, A.C., Ito, S., Escaramboni, B., de Neto, P.O., Herculano, R.D., Romeiro Miranda, M.C., Passalia, F.J., Rocha, J.C., Fernández Núñez, E.G.: Artificial intelligence approach based on near-infrared spectral data for monitoring of solid-state fermentation. Process Biochem. 51, 1338–1347 (2016). https://doi.org/10.1016/j.procbio.2016.07.017

    Article  Google Scholar 

  17. Hofer, A., Hauer, S., Kroll, P., Fricke, J., Herwig, C.: In-depth characterization of the raw material corn steep liquor and its bioavailability in bioprocesses of Penicillium chrysogenum. Process Biochem. 70, 20–28 (2018). https://doi.org/10.1016/j.procbio.2018.04.008

    Article  Google Scholar 

  18. Taiwo, A.E., Madzimbamuto, T.N., Ojumu, T.V.: Optimization of corn steep liquor dosage and other fermentation parameters for ethanol production by Saccharomyces cerevisiae type 1 and anchor instant yeast. Energies 11, 1–20 (2018). https://doi.org/10.3390/en11071740

    Article  Google Scholar 

  19. Seesuriyachan, P., Kuntiya, A., Hanmoungjai, P., Techapun, C.: Exopolysaccharide production by Lactobacillus confusus TISTR 1498 using coconut water as an alternative carbon source: the effect of peptone, yeast extract and beef extract. Songklanakarin J. Sci. Technol. 33, 379–387 (2011)

    Google Scholar 

  20. Fernández Nuñez, E.G., Barchi, A.C., Ito, S., Escaramboni, B., Herculano, R.D., Mayer, C.R.M., Oliva Neto, P.: Artificial intelligence approach for high level production of amylase using Rhizopus microsporus var. oligosporus and different agro-industrial wastes. J. Chem. Technol. Biotechnol. 92, 684–692 (2016). https://doi.org/10.1002/jctb.5054

    Article  Google Scholar 

  21. Nunez, E.G.F., Veliz, R.V., da Costa, B.L.V., de Rezende, A.G., Tonso, A.: Using statistical tools for improving bioprocesses. Asian J. Biotechnol. 5, 1–20 (2013). https://doi.org/10.3923/ajbkr.2013.1.20

    Article  Google Scholar 

  22. Sindhu, R., Gnansounou, E., Rebello, S., Binod, P., Varjani, S., Thakur, I.S., Nair, R.B., Pandey, A.: Conversion of food and kitchen waste to value-added products. J. Environ. Manag. 241, 619–630 (2019). https://doi.org/10.1016/j.jenvman.2019.02.053

    Article  Google Scholar 

  23. Zenebon, O., Pascuet, N.S., Tiglea, P.: Métodos físicos-quimicos para análise de Alimentos. Instituto Adolfo Lutz, São Paulo (2008)

    Google Scholar 

  24. Escaramboni, B., Oliva Neto, P.: Propriedade Intelectual—BR 102014031591–8 a2. (2016)

  25. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959)

    Article  Google Scholar 

  26. Leighton, T.J., Doi, R.H., Warren, R.A.J., Kelln, R.A.: The relationship of serine protease activity to RNA polymerase modification and sporulation in Bacillus subtilis. J. Mol. Biol. 76, 103–122 (1973). https://doi.org/10.1016/0022-2836(73)90083-1

    Article  Google Scholar 

  27. Melikoglu, M., Lin, C.S.K., Webb, C.: Solid state fermentation of waste bread pieces by Aspergillus awamori: analysing the effects of airflow rate on enzyme production in packed bed bioreactors. Food Bioprod. Process. 95, 63–75 (2015). https://doi.org/10.1016/j.fbp.2015.03.011

    Article  Google Scholar 

  28. Hasan, M.M., Marzan, L.W., Hosna, A., Hakim, A., Azad, A.K.: Optimization of some fermentation conditions for the production of extracellular amylases by using Chryseobacterium and Bacillus isolates from organic kitchen wastes. J. Genet. Eng. Biotechnol. 15, 59–68 (2017). https://doi.org/10.1016/j.jgeb.2017.02.009

    Article  Google Scholar 

  29. Soccol, C.R., Iloki, I., Marin, B., Raimbault, M.: Comparative production of alpha-amylase, glucoamylase and protein enrichment of raw and cooked cassava by Rhizopus strains in submerged and solid. J. Food Sci. Technol. 31, 320–323 (1994)

    Google Scholar 

  30. Freitas, A.C., Escaramboni, B., Carvalho, A.F.A., de Lima, V.M.G., Oliva-Neto, P.: Production and application of amylases of Rhizopus oryzae and Rhizopus microsporus var. oligosporus from industrial waste in acquisition of glucose. Chem. Pap. (2014). https://doi.org/10.2478/s11696-013-0466-x

    Article  Google Scholar 

  31. Peixoto-Nogueira, S.C., Sandrim, V.C., Guimarães, L.H.S., Jorge, J.A., Terenzi, H.F., Polizeli, M.L.T.M.: Evidence of thermostable amylolytic activity from Rhizopus microsporus var. rhizopodiformis using wheat bran and corncob as alternative carbon source. Bioprocess Biosyst. Eng. 31, 329–334 (2008). https://doi.org/10.1007/s00449-007-0166-4

    Article  Google Scholar 

  32. Casciatori, F.P., Laurentino, C.L., Zanelato, A.I., Thoméo, J.C.: Hygroscopic properties of solid agro-industrial by-products used in solid-state fermentation. Ind. Crops Prod. 64, 114–123 (2015). https://doi.org/10.1016/j.indcrop.2014.11.034

    Article  Google Scholar 

  33. Ito, S., Barchi, A.C., Escaramboni, B., de Oliva Neto, P., Herculano, R.D., Azevedo Borges, F., Romeiro Miranda, M.C., Fernández Núñez, E.G.: UV/Vis spectroscopy combined with chemometrics for monitoring solid-state fermentation with Rhizopus microsporus var. oligosporus. J. Chem. Technol. Biotechnol. 92, 2563–2572 (2017). https://doi.org/10.1002/jctb.5271

    Article  Google Scholar 

  34. Ellaiah, P., Adinarayana, K., Bhavani, Y., Padmaja, P., Srinivasulu, B.: Optimization of process parameters for glucoamylase production under solid state fermentation by a newly isolated Aspergillus species. Process Biochem. 38, 615–620 (2002). https://doi.org/10.1016/S0032-9592(02)00188-7

    Article  Google Scholar 

  35. Hashemi, M., Razavi, S.H., Shojaosadati, S.A., Mousavi, S.M., Khajeh, K., Safari, M.: Development of a solid-state fermentation process for production of an alpha amylase with potentially interesting properties. J. Biosci. Bioeng. 110, 333–337 (2010). https://doi.org/10.1016/j.jbiosc.2010.03.005

    Article  Google Scholar 

  36. Castro, R.J.S., Sato, H.H.: Synergistic effects of agroindustrial wastes on simultaneous production of protease and α-amylase under solid state fermentation using a simplex centroid mixture design. Ind. Crops Prod. 49, 813–821 (2013). https://doi.org/10.1016/j.indcrop.2013.07.002

    Article  Google Scholar 

  37. Zanatta, E.R., Reinehr, O.T., Awadallak, J.A., Kleinubing, S.J., Santos, J.B.O., Bariccatti, R.A., Arroyo, P.A., Silva, E.A.: Kinetic studies of thermal decomposition of sugarcane bagasse and cassava bagasse. J. Therm. Anal. Calorim. 125, 437–445 (2016). https://doi.org/10.1007/s10973-016-5378-x

    Article  Google Scholar 

  38. Vaseghi, Z., Najafpour, G.D., Mohseni, S., Mahjoub, S.: Production of active lipase by Rhizopus oryzae from sugarcane bagasse: solid state fermentation in a tray bioreactor. Int. J. Food Sci. Technol. 48, 283–289 (2013). https://doi.org/10.1111/j.1365-2621.2012.03185.x

    Article  Google Scholar 

  39. Dessie, W., Zhang, W., Xin, F., Dong, W., Zhang, M., Ma, J., Jiang, M.: Succinic acid production from fruit and vegetable wastes hydrolyzed by on-site enzyme mixtures through solid state fermentation. Bioresour. Technol. 247, 1177–1180 (2018). https://doi.org/10.1016/j.biortech.2017.08.171

    Article  Google Scholar 

  40. Akhtar, T., Hashmi, A.S., Tayyab, M., Anjum, A.A., Saeed, S.: Enhanced production of butyric acid by solid-state fermentation of rice polishings by a mutant strain of Clostridium tyrobutyricum. Trop. J. Pharm. Res. 17, 1235–1241 (2018). https://doi.org/10.4314/tjpr.v17i7.2

    Article  Google Scholar 

  41. de Oliveira, C.T., Alves, E.A., Todero, I., Kuhn, R.C., de Oliveira, D., Mazutti, M.A.: Production of cutinase by solid-state fermentation and its use as adjuvant in bioherbicide formulation. Bioprocess Biosyst. Eng. (2019). https://doi.org/10.1007/s00449-019-02086-w

    Article  Google Scholar 

  42. Wang, F., Hu, J.H., Guo, C., Liu, C.Z.: Enhanced laccase production by Trametes versicolor using corn steep liquor as both nitrogen source and inducer. Bioresour. Technol. 166, 602–605 (2014). https://doi.org/10.1016/j.biortech.2014.05.068

    Article  Google Scholar 

  43. Kona, R.P., Qureshi, N., Pai, J.S.: Production of glucose oxidase using Aspergillus niger and corn steep liquor. Bioresour. Technol. 78, 123–126 (2001). https://doi.org/10.1016/S0960-8524(01)00014-1

    Article  Google Scholar 

  44. Britt, D.G., Huber, J.T.: Fungal growth during fermentation and refermentation of nonprotein nitrogen treated corn silage. J. Dairy Sci. 58, 1666–1671 (1975)

    Article  Google Scholar 

  45. Rossi, S., Turchetti, B., Sileoni, V., Marconi, O., Perretti, G.: Evaluation of Saccharomyces cerevisiae strains isolated from non-brewing environments in beer production. J. Inst. Brew. 124, 381–388 (2018). https://doi.org/10.1002/jib.503

    Article  Google Scholar 

  46. Han, W., Ye, M., Zhe, A.J., Zhao, H.T., Li, Y.F.: Batch dark fermentation from enzymatic hydrolyzed food waste for hydrogen production. Bioresour. Technol. 191, 24–29 (2015). https://doi.org/10.1016/j.biortech.2015.04.120

    Article  Google Scholar 

  47. Ballesteros, M., Sáez, F., Ballesteros, I., Manzanares, P., Negro, M.J., Martínez, J.M., Castañeda, R., Dominguez, J.M.O.: Ethanol production from the organic fraction obtained after thermal pretreatment of municipal solid waste. Appl. Biochem. Biotechnol. 161, 423–431 (2010). https://doi.org/10.1007/s12010-009-8877-4

    Article  Google Scholar 

  48. Mahmoodi, P., Karimi, K., Taherzadeh, M.J.: Efficient conversion of municipal solid waste to biofuel by simultaneous dilute-acid hydrolysis of starch and pretreatment of lignocelluloses. Energy Convers. Manag. 166, 569–578 (2018). https://doi.org/10.1016/j.enconman.2018.04.067

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Brazilian Council for Research and Development [CNPq, Brazil, Grant Number 141472/2015-4] for Ph.D. Studentship and São Paulo Research Foundation [FAPESP, SP, Brazil, Grant Numbers 2014/241881, 2017/029097 and 2018/045076] for the funding. The first author acknowledges her parents, Durval and Neide, and brother, Gustavo for the inspiration to write this paper.

Funding

The study was funded by Brazilian Council for Research and Development [CNPq, Brazil, Grant Number 141472/2015–4] and São Paulo Research Foundation [FAPESP, SP, Brazil, Grant Numbers 2014/241881, 2017/029097 and 2018/045076].

Author information

Authors and Affiliations

Authors

Contributions

PON and BE conceived and designed the research. BE, BCG, and MMA conducted experiments as well as organized and analyzed the data. BE and BCG wrote the manuscript. DAP contributed to the cost-effectiveness analysis and reviewed the manuscript. EGFN contributed with data statistical processing, reviewed and edited the paper. All authors read and approved the manuscript.

Corresponding author

Correspondence to Eutimio Gustavo Fernández Núñez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escaramboni, B., Garnica, B.C., Abe, M.M. et al. Food Waste as a Feedstock for Fungal Biosynthesis of Amylases and Proteases. Waste Biomass Valor 13, 213–226 (2022). https://doi.org/10.1007/s12649-021-01511-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01511-0

Keywords

Navigation