Skip to main content
Log in

Insight into structural degradation of NCMs under extreme fast charging process

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Lithium-ion batteries (LIBs) with extreme fast charging (XFC) capability are considered an effective way to alleviate range anxiety for electric vehicle (EV) buyers. Owing to the high ionic and electronic conductivity of LiNixCoyMnzO2 (x + y + z = 1, NCM) cathodes, the inevitable Li plating of graphite in NCM | graphite cell is usually identified as a key bottleneck for XFC LIBs. However, the capacity decay mechanism of cathode materials under XFC has not been fully investigated. In this work, three typical NCM cathode materials with different Ni fractions were chosen and their electrochemical performances under XFC associated with structural evolution were investigated. A faster capacity decay of NCMs under XFC conditions is observed, especially for Ni-rich NCMs. In-situ X-ray diffraction (XRD) reveals that the multiple c-axis parameters appear at the high-voltage regions in Ni-rich NCMs, which is probably triggered by the larger obstruction of Li (de)intercalation. Particularly, NCMs with moderate Ni fraction also present a similar trend under XFC conditions. This phenomenon is more detrimental to the structural and morphological stability, resulting in a faster capacity decay than that under low current charging. This work provides new insight into the degradation mechanism of NCMs under XFC conditions, which can promote the development of NCM cathode materials with XFC capability.

Graphical abstract

摘要

具有极快充电 (XFC) 能力的锂离子电池 (LIBs) 被认为是减轻电动汽车 (EV) 购买者里程焦虑的有效方法。 由于LiNixCoyMnzO2 (x + y + z = 1, NCM)正极的高离子电导率和电子电导率, NCM|石墨电池中不可避免的Li在石墨上的沉积通常被认为是XFC LIBs的关键瓶颈。然而, XFC下正极材料的容量衰减机制尚未得到充分研究。 在这项工作中, 我们选择了三种具有不同 Ni 含量的典型 NCM 正极材料, 并研究了它们在XFC下与结构演变相关的电化学性能。我们观察到XFC条件下NCM的容量衰减更快, 尤其是对于高Ni含量的NCM。原位X射线衍射(XRD)表明, 多个c值出现在高镍NCM的高压区域, 这可能是由更大的锂 (脱) 嵌入阻碍引起的。特别是, 具有中等Ni含量的NCM在XFC条件下也呈现出类似的趋势。这种现象对结构和形态稳定性更加不利, 导致容量衰减比低电流充电更快。这项工作为XFC条件下 NCM 的衰减机制提供了新的见解, 可以促进具有XFC能力的NCM正极材料的开发。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schmuch R, Wagner R, Hörpel G, Placke T, Winter M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat Energy. 2018;3(4):267. https://doi.org/10.1038/s41560-018-0107-2.

    Article  CAS  Google Scholar 

  2. Park GT, Namkoong B, Kim SB, Liu J, Yoon CS, Sun YK. Introducing high-valence elements into cobalt-free layered cathodes for practical lithium-ion batteries. Nat Energy. 2022;7(10):946. https://doi.org/10.1038/s41560-022-01106-6.

    Article  CAS  Google Scholar 

  3. Yang XG, Wang CY. Understanding the trilemma of fast charging, energy density and cycle life of lithium-ion batteries. J Power Sources. 2018;402:489. https://doi.org/10.1016/j.jpowsour.2018.09.069.

    Article  CAS  Google Scholar 

  4. Liu Y, Zhu Y, Cui Y. Challenges and opportunities towards fast-charging battery materials. Nat Energy. 2019;4(7):540. https://doi.org/10.1038/s41560-019-0405-3.

    Article  Google Scholar 

  5. Paul PP, Cao C, Thampy V, Steinrück HG, Tanim TR, Dunlop AR, Trask SE, Jansen AN, Dufek EJ, Weker JN, Toney MF. Using in situ high-energy X-ray diffraction to quantify electrode behavior of Li-ion batteries from extreme fast charging. ACS Appl Energy Mater. 2021;4(10):11590. https://doi.org/10.1021/acsaem.1c02348.

    Article  CAS  Google Scholar 

  6. Kim J, Lee H, Cha H, Yoon M, Park M, Cho J. Prospect and reality of Ni-Rich cathode for commercialization. Adv Energy Mater. 2018;8(6):1702028. https://doi.org/10.1002/aenm.201702028.

    Article  CAS  Google Scholar 

  7. He W, Xie QS, Lin J, Qu BH, Wang LS, Peng DL. Mechanisms and applications of layer/spinel phase transition in Li- and Mn-rich cathodes for lithium-ion batteries. Rare Met. 2022;41(5):1456. https://doi.org/10.1007/s12598-021-01896-w.

    Article  CAS  Google Scholar 

  8. Wang JH, Wang Y, Guo YZ, Liu CW, Dan LL. Electrochemical characterization of AlPO4 coated LiNi1/3Co1/3Mn1/3O2 cathode materials for high temperature lithium battery application. Rare Met. 2021;40(1):78. https://doi.org/10.1007/s12598-014-0247-x.

    Article  CAS  Google Scholar 

  9. Klein S, Wrogemann JM, Van Wickeren S, Harte P, Bärmann P, Heidrich B, Hesper J, Borzutzki K, Nowak S, Börner M, Winter M, Kasnatscheew J, Placke T. Understanding the role of commercial separators and their reactivity toward LiPF6 on the failure mechanism of high-voltage NCM523 || graphite Lithium ion cells. Adv Energy Mater. 2022;12(2):2102599. https://doi.org/10.1002/aenm.202102599.

    Article  CAS  Google Scholar 

  10. Yuan K, Ning RQ, Zhou LJ, Shen C, Zhou SS, Li J, Jin T, Zhang XG, Xie KY. A low-carbon strategy for revival of degraded single crystal LiNi0.6Co0.2Mn0.2O2. Rare Met. 2023;42(2):459. https://doi.org/10.1007/s12598-022-02147-2.

    Article  CAS  Google Scholar 

  11. Sari HMK, Li XF. Controllable cathode-electrolyte interface of Li[Ni0.8Co0.1Mn0.1]O2 for Lithium ion batteries: a review. Adv Energy Mater. 2019;9(39):1901597. https://doi.org/10.1002/aenm.201901597.

    Article  CAS  Google Scholar 

  12. Zhang JR, Lan ZW, Xi RH, Li YY, Wang JT, Zhang CH. Review on deficiency and modification of high nickel ternary materials for lithium-ion batteries. Chin J Rare Met. 2022;46(3):367. https://doi.org/10.13373/j.cnki.cjrm.XY20090004

    Article  CAS  Google Scholar 

  13. Ren J, Ma ZS, Wang YD, Ou JR, Chen TQ, Zheng SY. Microcracks in nickel-rich layered cathodes: mechanism of generation and coping strategies. Chin J Rare Met. 2022;46(6):736. https://doi.org/10.13373/j.cnki.cjrm.XY22030009.

    Article  Google Scholar 

  14. Xu X, Zhu H, Tang Y, Wang LG, Zhang QH, Ren Y, Lan S, Xiang LZ, Jian JY, Huo H, Chen GX, Gu L, Yin GP, Wang XL, Sun XL, Du CY, Liu Q. Spreading monoclinic boundary network between hexagonal primary grains for high performance Ni-rich cathode materials. Nano Energy. 2022;100:107502. https://doi.org/10.1016/j.nanoen.2022.107502.

    Article  CAS  Google Scholar 

  15. Wu Q, Mao SL, Wang ZY, Tong Y, Lu YY. Improving LiNixCoyMn1−xyO2 cathode electrolyte interface under high voltage in lithium ion batteries. Nano Select. 2020;1(1):111. https://doi.org/10.1002/nano.202000008.

    Article  Google Scholar 

  16. Klein S, Harte P, Henschel J, Bärmann P, Borzutzki K, Beuse T, Wickeren SV, Heidrich B, Kasnatscheew J, Nowak S, Winter M, Placke T. On the beneficial impact of Li2CO3 as electrolyte additive in NCM523 || graphite lithium ion cells under high-voltage conditions. Adv Energy Mater. 2021;11(10):2003756. https://doi.org/10.1002/aenm.202003756.

    Article  CAS  Google Scholar 

  17. Kondrakov AO, Schmidt A, Xu J, Geßwein H, Mönig R, Hartmann P, Sommer H, Brezesinski T, Janek J. Anisotropic lattice strain and mechanical degradation of high- and low-Nickel NCM cathode materials for Li-Ion batteries. The J Phys Chem C. 2017;121(6):3286. https://doi.org/10.1021/acs.jpcc.6b12885.

    Article  CAS  Google Scholar 

  18. Zhu XF, Li X, Liang TQ, Liu XH, Ma JM. Electrolyte perspective on stabilizing LiNi0.8Co0.1Mn0.1O2 cathode for lithium-ion batteries. Rare Met. 2023;42(2):387. https://doi.org/10.1007/s12598-022-02101-2.

    Article  CAS  Google Scholar 

  19. Schweidler S, Biasi LD, Garcia G, Mazilkin A, Hartmann P, Brezesinski T, Janek J. Investigation into mechanical degradation and fatigue of high-Ni NCM cathode material: a long-term cycling study of full cells. ACS Appl Energy Mater. 2019;2(10):7375. https://doi.org/10.1021/acsaem.9b01354.

    Article  CAS  Google Scholar 

  20. Fan XM, Hu GR, Zhang B, Ou X, Zhang JF, Zhao WG, Jia HP, Zou LF, Li P, Yang Y. Crack-free single-crystalline Ni-rich layered NCM cathode enable superior cycling performance of lithium-ion batteries. Nano Energy. 2020;70:104450. https://doi.org/10.1016/j.nanoen.2020.104450.

    Article  CAS  Google Scholar 

  21. Son SB, Robertson D, Yang Z, Tsai Y, Lopykinski S, Bloom I. Fast charge-driven Li plating on anode and structural degradation of cathode. J Electrochem Soc. 2020;167(14):140506. https://doi.org/10.1149/1945-7111/abc031.

    Article  CAS  Google Scholar 

  22. Tanim TR, Yang ZZ, Finegan DP, Chinnam PR, Lin YL, Weddle PJ, Bloom I, Colclasure AM, Dufek EJ, Wen JG, Tsai YF, Evans MC, Smith K, Allen JM, Dickerson CC, Quinn AH, Dunlop AR, Trask SE, Jansen AN. A comprehensive understanding of the aging effects of extreme fast charging on high Ni NMC cathode. Adv Energy Mater. 2022;12(22):2103712. https://doi.org/10.1002/aenm.202103712.

    Article  CAS  Google Scholar 

  23. Chinnam PR, Colclasure AM, Chen BR, Tanim TR, Dufek EJ, Smith K, Evans MC, Dunlop AR, Trask SE, Polzin BJ, Jansen AN. Fast-charging aging considerations: incorporation and alignment of cell design and material degradation pathways. ACS Appl Energy Mater. 2021;4(9):9133. https://doi.org/10.1021/acsaem.1c01398.

    Article  CAS  Google Scholar 

  24. Tanim TR, Yang ZZ, Colclasure AM, Chinnam PR, Gasper P, Lin YL, Yu L, Weddle PJ, Wen JG, Dufek EJ, Bloom I, Smith K, Dickerson CC, Evans MC, Tsai YF, Dunlop AR, Trask SE, Polzin BJ, Jansen AN. Extended cycle life implications of fast charging for lithium-ion battery cathode. Energy Storage Mater. 2021;41:656. https://doi.org/10.1016/j.ensm.2021.07.001.

    Article  Google Scholar 

  25. Lee W, Muhammad S, Kim T, Kim H, Lee E, Jeong M, Son SH, Ryou JH, Yoon WS. New Insight into Ni-Rich layered structure for next-generation Li rechargeable batteries. Adv Energy Mater. 2018;8(4):1701788. https://doi.org/10.1002/aenm.201701788.

    Article  CAS  Google Scholar 

  26. Ryu HH, Park KJ, Yoon CS, Sun YK. Capacity fading of Ni-rich Li[NixCoyM1-x-y]O2 (0.6≤ x≤ 0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation? Chem Mater. 2018;30(3):1155. https://doi.org/10.1021/acs.chemmater.7b05269.

    Article  CAS  Google Scholar 

  27. Li WD, Asl HY, Xie Q, Manthiram A. Collapse of LiNi1–x–yCoxMnyO2 lattice at deep charge irrespective of nickel content in lithium-ion batteries. J Am Chem Soc. 2019;141(13):5097. https://doi.org/10.1021/jacs.8b13798.

    Article  CAS  Google Scholar 

  28. Jamil S, Wang G, Yang L, Xie X, Cao S, Liu H, Chang BB, Wang XY. Suppressing H2–H3 phase transition in high Ni–low Co layered oxide cathode material by dual modification. J Mater Chem A. 2020;8(40):21306. https://doi.org/10.1039/d0ta07965k.

    Article  CAS  Google Scholar 

  29. Zhu HK, Yin ZJ, Tang Y, Ren Y, Zhu H, Luo D, Lan S, Yang LG, Liu Q. Modulating precursor nanosheets for stabilized Ni-rich cathode material for Li-ion batteries. Rare Met. 2022;41(8):2552–9. https://doi.org/10.1007/s12598-022-01983-6.

    Article  CAS  Google Scholar 

  30. Noh HJ, Youn SJ, Yoon CS, Sun YK. Comparison of the structural and electrochemical properties of layered Li [NixCoyMnz]O2 (x= 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J Power Sources. 2013;233:121. https://doi.org/10.1016/j.jpowsour.2013.01.063.

    Article  CAS  Google Scholar 

  31. Konarov A, Myung ST, Sun YK. Cathode materials for future electric vehicles and energy storage systems. ACS Energy Lett. 2017;2(3):703. https://doi.org/10.1021/acsenergylett.7b00130.

    Article  CAS  Google Scholar 

  32. Fan XM, Liu Y, Ou X, Zhang JF, Zhang B, Wang D, Hu GR. Unravelling the influence of quasi single-crystalline architecture on high-voltage and thermal stability of LiNi0.5Co0.2Mn0.3O2 cathode for lithium-ion batteries. Chem Eng J. 2020;393:124709. https://doi.org/10.1016/j.cej.2020.124709.

    Article  CAS  Google Scholar 

  33. Kang K, Ceder G. Factors that affect Li mobility in layered lithium transition metal oxides. Phys Rev B. 2006;74(9):094105. https://doi.org/10.1103/PhysRevB.74.094105.

    Article  CAS  Google Scholar 

  34. Bianchini M, Roca-Ayats M, Hartmann P, Brezesinski T, Janek J. There and Back Again—The journey of LiNiO2 as a cathode active material. Angew Chem Int Ed. 2019;58(31):10434. https://doi.org/10.1002/anie.201812472.

    Article  CAS  Google Scholar 

  35. Zhu H, Tang Y, Wiaderek KM, Borkiewicz OJ, Ren Y, Zhang J, Ren JC, Fan LL, Li CC, Li DF, Wang XL, Liu Q. Spontaneous strain buffer enables superior cycling stability in single-crystal Nickel-Rich NCM cathode. Nano Lett. 2021;21(23):9997. https://doi.org/10.1021/acs.nanolett.1c03613.

    Article  CAS  Google Scholar 

  36. Kondrakov AO, Geßwein H, Galdina K, De Biasi L, Meded V, Filatova EO, Schumacher G, Wenzel W, Hartmann P, Brezesinski T, Janek J. Charge-transfer-induced lattice collapse in Ni-Rich NCM cathode Materials during delithiation. J Phys Chem C. 2017;121(44):24381. https://doi.org/10.1021/acs.jpcc.7b06598.

    Article  CAS  Google Scholar 

  37. Xu J, Lin F, Doeff MM, Tong W. A review of Ni-based layered oxides for rechargeable Li-ion batteries. J Mater Chem A. 2017;5(3):874. https://doi.org/10.1039/c6ta07991a.

    Article  CAS  Google Scholar 

  38. Huang YL, Zhu H, Zhu HK, Zhang J, Ren Y, Liu Q. Insight into the capacity decay mechanism of cycled LiNi0.5Co0.2Mn0.3O2 cathodes via in situ X-ray diffraction. Nanotechnology. 2021;32(29):295701. https://doi.org/10.1088/1361-6528/abf2ff.

    Article  CAS  Google Scholar 

  39. Li LJ, Chen JX, Huang H, Tan L, Song LB, Wu HH, Wang C, Zhao ZX, Yi HL, Duan JF, Dong T. Role of residual Li and oxygen vacancies in Ni-rich cathode materials. ACS Appl Mater Interfaces. 2021;13(36):42554. https://doi.org/10.1021/acsami.1c06550.

    Article  CAS  Google Scholar 

  40. Wang B, Zhang FL, Zhou XA, Wang P, Wang J, Ding H, Dong H, Liang WB, Zhang NS, Li SY. Which of the nickel-rich NCM and NCA is structurally superior as a cathode material for lithium-ion batteries? J Mater Chem A. 2021;9(23):13540. https://doi.org/10.1039/d1ta01128f.

    Article  CAS  Google Scholar 

  41. Kasnatscheew J, Rodehorst U, Streipert B, Meyer SW, Jakelski R, Wagner R, Laskovic IC, Winter M. Learning from overpotentials in lithium ion batteries: a case study on the LiNi1/3Co1/3Mn1/3O2(NCM) cathode. J Electrochem Soc. 2016;163(14):A2943. https://doi.org/10.1149/2.0461614jes.

    Article  CAS  Google Scholar 

  42. Kasnatscheew J, Evertz M, Streipert B, Wagner R, Klöpsch R, Vortmann B, Hahn H, Nowak S, Amereller M, Gentschev AC, Lamp P, Winter M. The truth about the 1st cycle Coulombic efficiency of LiNi1/3Co1/3Mn1/3O2 (NCM) cathodes. Phys Chem Chem Phys. 2016;18(5):3956. https://doi.org/10.1039/c5cp07718d.

    Article  CAS  Google Scholar 

  43. Ishidzu K, Oka Y, Nakamura T. Lattice volume change during charge/discharge reaction and cycle performance of Li[NixCoyMnz]O2. Solid State Ion. 2016;288:176. https://doi.org/10.1016/j.ssi.2016.01.009.

    Article  CAS  Google Scholar 

  44. Sun HH, Manthiram A. Impact of microcrack generation and surface degradation on a nickel-rich layered Li[Ni0.9Co0.05Mn0.05]O2 cathode for lithium-ion batteries. Chem Mater. 2017;29(19):8486. https://doi.org/10.1021/acs.chemmater.7b03268.

    Article  CAS  Google Scholar 

  45. Gan QM, Qin N, Wang ZY, Li ZQ, Zhu YH, Li YZ, Gu S, Yuan HM, Luo W, Liu L, Xu ZH, Lu ZG. Revealing mechanism of Li3PO4 coating suppressed surface oxygen release for commercial Ni-rich layered cathodes. ACS Appl Energy Mater. 2020;3(8):7445. https://doi.org/10.1021/acsaem.0c00859.

    Article  CAS  Google Scholar 

  46. Friedrich F, Strehle B, Freiberg AT, Kleiner K, Day SJ, Erk C, Piana M, Gasteiger HA. Capacity fading mechanisms of NCM-811 cathodes in lithium-ion batteries studied by X-ray diffraction and other diagnostics. J Electrochem Soc. 2019;166(15):A3760. https://doi.org/10.1149/2.0821915jes.

    Article  CAS  Google Scholar 

  47. Zheng SY, Hong CY, Guan XY, Xiang YX, Liu XS, Xu GL, Liu R, Zhong GM, Zheng F, Li YX, Zhang XY, Ren Y, Chen ZH, Amine K, Yang Y. Correlation between long range and local structural changes in Ni-rich layered materials during charge and discharge process. J Power Sources. 2019;412:336. https://doi.org/10.1016/j.jpowsour.2018.11.053.

    Article  CAS  Google Scholar 

  48. Zhang R, Wang CY, Zou PC, Lin RQ, Ma L, Yin L, Li TY, Xu WQ, Jia H, Li QY, Sainio S, Kisslinger K, Trask SE, Ehrlich SN, Yang Y, Kiss AM, Ge MY, Polzin BJ, Lee SJ, Xu W, Ren Y, Xin HLL. Compositionally complex doping for zero-strain zero-cobalt layered cathodes. Nature. 2022;610(7930):67. https://doi.org/10.1038/s41586-022-05115-z.

    Article  CAS  Google Scholar 

  49. Ghanty C, Markovsky B, Erickson EM, Talianker M, Haik O, Yossef TY, Mor A, Aurbach D, Lampert J, Volkov A, Shin JY, Garsuch A, Chesneau FF, Erk C. Li+‐Ion extraction/insertion of Ni‐Rich Li1+x(NiyCozMnz)wO2 (0.005< x< 0.03; y:z=8:1,w≈1) electrodes: in situ XRD and Raman spectroscopy study. ChemElectroChem. 2015;2(10):1479. Doi: https://doi.org/10.1002/celc.201500160.

  50. Zhang SS. Unveiling capacity degradation mechanism of Li-ion battery in fast-charging process. ChemElectroChem. 2020;7(2):555. https://doi.org/10.1002/celc.201902050.

    Article  CAS  Google Scholar 

  51. Yan PF, Zheng JM, Liu J, Wang BQ, Cheng XP, Zhang YF, Sun XL, Wang CM, Zhang JG. Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries. Nat Energy. 2018;3(7):600. https://doi.org/10.1038/s41560-018-0191-3.

    Article  CAS  Google Scholar 

  52. Trevisanello E, Ruess R, Conforto G, Richter FH, Janek J. Polycrystalline and single crystalline NCM cathode materials—Quantifying particle cracking, active surface area, and lithium diffusion. Adv Energy Mater. 2021;11(18):2003400. https://doi.org/10.1002/aenm.202003400.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key R&D Program of China (No. 2020YFA0406203), Shenzhen Science and Technology Innovation Commission (Nos. JCYJ20180507181806316, JCYJ20200109105618137 and SGDX2019081623240948), the ECS scheme (Nos. CityU21307019, 7005500, 7005615, 7005612 and 7020043) and Shenzhen Research Institute, City University of Hong Kong.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Liu or Hao He.

Ethics declarations

Conflict of interests

Qi Liu is an editorial board member for Rare Metals and was not involved in the editorial review or the decision to publish this article. The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2124 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Wang, XY., Ren, JC. et al. Insight into structural degradation of NCMs under extreme fast charging process. Rare Met. 43, 41–50 (2024). https://doi.org/10.1007/s12598-023-02454-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02454-2

Keywords

Navigation