Skip to main content
Log in

Gold nanoparticle-DNA aptamer-assisted delivery of antimicrobial peptide effectively inhibits Acinetobacter baumannii infection in mice

  • Systems and Synthetic Microbiology and Bioinformatics
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Acinetobacter baumannii causes multidrug resistance, leading to fatal infections in humans. In this study, we showed that Lys AB2 P3-His-a hexahistidine-tagged form of an antimicrobial peptide (AMP) loaded onto DNA aptamer-functionalized gold nanoparticles (AuNP-Apt)-can effectively inhibit A. baumannii infection in mice. When A. baumannii-infected mice were intraperitoneally injected with AuNP-Apt loaded with Lys AB2 P3-His, a marked reduction in A. baumannii colonization was observed in the mouse organs, leading to prominently increased survival time and rate of the mice compared to those of the control mice treated with AuNP-Apt or Lys AB2 P3-His only. This study shows that AMPs loaded onto AuNP-Apt could be an effective therapeutic tool against infections caused by multidrug-resistant pathogenic bacteria in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almaaytah, A., Mohammed, G.K., Abualhaijaa, A., and Al-Balas, Q. 2017. Development of novel ultrashort antimicrobial peptide nanoparticles with potent antimicrobial and antibiofilm activities against multidrug-resistant bacteria. Drug Des. Devel. Ther. 11, 3159–3170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bassetti, M., Ginocchio, F., and Mikulska, M. 2011 New treatment options against Gram-negative organisms. In Vincent, J.L. (ed.), Annual Update in Intensive Care and Emergency Medicine 2011, vol. 1. Springer, Berlin, Germany.

    Google Scholar 

  • Bergogne-Bérézin, E. and Towner, K.J. 1996. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin. Microbiol. Rev. 9, 148–165.

    Article  PubMed  PubMed Central  Google Scholar 

  • Blot, S., Vandewoude, K., and Colardyn, F. 2003. Nosocomial bacteremia involving Acinetobacter baumannii in critically ill patients: a matched cohort study. Intensive Care Med. 29, 471–475.

    Article  PubMed  Google Scholar 

  • Carratalá, J.V., Serna, N., Villaverde, A., Vázquez, E., and Ferrer-Miralles, N. 2020. Nanostructured antimicrobial peptides: the last push towards clinics. Biotechnol. Adv. 44, 107603.

    Article  PubMed  Google Scholar 

  • Cerqueira, G.M. and Peleg, A.Y. 2011. Insights into Acinetobacter baumannii pathogenicity. IUBMB Life 63, 1055–1060.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, M.M.C., Cuda, G., Bunimovich, Y.L., Gaspari, M., Heath, J.R., Hill, H.D., Mirkin, C.A., Nijdam, A.J., Terracciano, R., Thundat, T., et al. 2006. Nanotechnologies for biomolecular detection and medical diagnostics. Curr. Opin. Chem. Biol. 10, 11–19.

    Article  CAS  PubMed  Google Scholar 

  • Choi, J., Baek, J., Kweon, D., Ko, K.S., and Yoon, H. 2020. Rapid determination of carbapenem resistance by low-cost colorimetric methods: propidium Iodide and alamar blue staining. J. Microbiol. 58, 415–421.

    Article  CAS  PubMed  Google Scholar 

  • Choi, C.H., Lee, J.S., Lee, Y.C., Park, T.I., and Lee, J.C. 2008. Acinetobacter baumannii invades epithelial cells and outer membrane protein A mediates interactions with epithelial cells. BMC Microbiol. 8, 216.

    Article  PubMed  PubMed Central  Google Scholar 

  • Connor, E.E., Mwamuka, J., Gole, A., Murphy, C.J., and Wyatt, M.D. 2005. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1, 325–327.

    Article  CAS  PubMed  Google Scholar 

  • Darouiche, R.O. and Hamill, R.J. 1994. Antibiotic penetration of and bactericidal activity within endothelial cells. Antimicrob. Agents Chemother. 38, 1059–1064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Vegas, E.Z.S., Nieves, B., Araque, M., Velasco, E., Ruíz, J., and Vila, J. 2006. Outbreak of infection with Acinetobacter strain RUH 1139 in an intensive care unit. Infect. Control Hosp. Epidemiol. 27, 397–403.

    Article  PubMed  Google Scholar 

  • Dijkshoorn, L., Nemec, A., and Seifert, H. 2007. An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nat. Rev. Microbiol. 5, 939–951.

    Article  CAS  PubMed  Google Scholar 

  • Esposito, S., Tagliabue, C., Bosis, S., and Principi, N. 2011. Levofloxacin for the treatment of Mycoplasma pneumoniae-associated meningoencephalitis in childhood. Int. J. Antimicrob. Agents 37, 472–475.

    Article  CAS  PubMed  Google Scholar 

  • Fagon, J.Y., Chastre, J., Domart, Y., Trouillet, J.L., and Gibert, C. 1996. Mortality due to ventilator-associated pneumonia or colonization with Pseudomonas or Acinetobacter species: assessment by quantitative culture of samples obtained by a protected specimen brush. Clin. Infect. Dis. 23, 538–542.

    Article  CAS  PubMed  Google Scholar 

  • Fair, R.J. and Tor, Y. 2014. Antibiotics and bacterial resistance in the 21st century. Perspect. Medicin. Chem. 6, 25–64.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaddy, J.A., Tomaras, A.P., and Actis, L.A. 2009. The Acinetobacter baumannii 19606 OmpA protein plays a role in biofilm formation on abiotic surfaces and in the interaction of this pathogen with eukaryotic cells. Infect. Immun. 77, 3150–3160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garnacho-Montero, J., Ortiz-Leyba, C., Jiménez-Jiménez, F., Barrero-Almódovar, A., García-Garmendia, J., Bernabeu-Wittell, M., Gallego-Lara, S., and Madrazo-Osuna, J. 2003. Treatment of multidrug-resistant Acinetobacter baumannii ventilator-associated pneumonia (VAP) with intravenous colistin: a comparison with imipenem-susceptible VAP. Clin. Infect. Dis. 36, 1111–1118.

    Article  CAS  PubMed  Google Scholar 

  • Gentilucci, L., Tolomelli, A., and Squassabia, F. 2006. Peptides and peptidomimetics in medicine, surgery and biotechnology. Curr. Med. Chem. 13, 2449–2466.

    Article  CAS  PubMed  Google Scholar 

  • Hancock, R.E.W. and Sahl, H.G. 2006. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 24, 1551–1557.

    Article  CAS  PubMed  Google Scholar 

  • Jawad, A., Seifert, H., Snelling, A., Heritage, J., and Hawkey, P.M. 1998. Survival of Acinetobacter baumannii on dry surfaces: comparison of outbreak and sporadic isolates. J. Clin. Microbiol. 36, 1938–1941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, Q., Lou, Z., Wang, H., and Chen, C. 2019. Antimicrobial effect and proposed action mechanism of cordycepin against Escherichia coli and Bacillus subtilis. J. Microbiol. 57, 288–297.

    Article  CAS  PubMed  Google Scholar 

  • Kang, H.K., Kim, C., Seo, C.H., and Park, Y. 2017. The therapeutic applications of antimicrobial peptides (AMPs): a patent review. J. Microbiol. 55, 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Kang, S.J., Park, S.J., Mishig-Ochir, T., and Lee, B.J. 2014. Antimicrobial peptides: therapeutic potentials. Expert Rev. Anti Infect. Ther. 12, 1477–1486.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S.M., Escorbar, I., Lee, K., Fuchs, B.B., Mylonakis, E., and Kim, W. 2020. Anti-MRSA agent discovery using Caenorhabditis elegans-based high-throughput screening. J. Microbiol. 58, 431–444.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S.Y., Park, C., Jang, H.J., Kim, B.O., Bae, H.W., Chung, I.Y., Kim, E.S., and Cho, Y.H. 2019. Antibacterial strategies inspired by the oxidative stress and response networks. J. Microbiol. 57, 203–212.

    Article  PubMed  Google Scholar 

  • Kim, M., Park, J., Kang, M., Yang, J., and Park, W. 2021. Gain and loss of antibiotic resistant genes in multidrug resistant bacteria: One Health perspective. J. Microbiol. 59, 535–545.

    Article  CAS  PubMed  Google Scholar 

  • Ko, K.S. 2019. Antibiotic-resistant clones in Gram-negative pathogens: presence of global clones in Korea. J. Microbiol. 57, 195–202.

    Article  CAS  PubMed  Google Scholar 

  • Kökpinar, Ö., Walter, J.G., Shoham, Y., Stahl, F., and Scheper, T. 2011. Aptamer-based downstream processing of his-tagged proteins utilizing magnetic beads. Biotechnol. Bioeng. 108, 2371–2379.

    Article  PubMed  Google Scholar 

  • Kramer, A., Schwebke, I., and Kampf, G. 2006. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect. Dis. 6, 130.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lai, M.J., Lin, N.T., Hu, A., Soo, P.C., Chen, L.K., Chen, L.H., and Chang, K.C. 2011. Antibacterial activity of Acinetobacter baumannii phage φAB2 endolysin (LysAB2) against both Grampositive and Gram-negative bacteria. Appl. Microbiol. Biotechnol. 90, 529–539.

    Article  CAS  PubMed  Google Scholar 

  • Lee, K., Kim, D.W., and Cha, C.J. 2021. Overview of bioinformatic methods for analysis of antibiotic resistome from genome and metagenome data. J. Microbiol. 59, 270–280.

    Article  CAS  PubMed  Google Scholar 

  • Lee, H.T., Kim, S.K., and Yoon, J.W. 2019. Antisense peptide nucleic acids as a potential anti-infective agent. J. Microbiol. 57, 423–430.

    Article  CAS  PubMed  Google Scholar 

  • Lee, B., Park, J., Ryu, M., Kim, S., Joo, M., Yeom, J.H., Kim, S., Park, Y., Lee, K., and Bae, J. 2017. Antimicrobial peptide-loaded gold nanoparticle-DNA aptamer conjugates as highly effective antibacterial therapeutics against Vibrio vulnificus. Sci. Rep. 7, 13572.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lehar, S.M., Pillow, T., Xu, M., Staben, L., Kajihara, K.K., Vandlen, R., DePalatis, L., Raab, H., Hazenbos, W.L., Morisaki, J.H., et al. 2015. Novel antibody-antibiotic conjugate eliminates intracellular S. aureus. Nature 527, 323–328.

    Article  CAS  PubMed  Google Scholar 

  • Lemon, D.J., Kay, M.K., Titus, J.K., Ford, A.A., Chen, W., Hamlin, N.J., and Hwang, Y.Y. 2019. Construction of a genetically modified T7Select phage system to express the antimicrobial peptide 1018. J. Microbiol. 57, 532–538.

    Article  CAS  PubMed  Google Scholar 

  • Mahgoub, S., Ahmed, J., and Glatt, A.E. 2002. Underlying characteristics of patients harboring highly resistant Acinetobacter baumannii. Am. J. Infect. Control 30, 386–390.

    Article  PubMed  Google Scholar 

  • Makabenta, J.M.V., Nabawy, A., Li, C.H., Schmidt-Malan, S., Patel, R., and Rotello, V.M. 2021. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat. Rev. Microbiol. 19, 23–36.

    Article  CAS  PubMed  Google Scholar 

  • Marr, A.K., Gooderham, W.J., and Hancock, R.E. 2006. Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr. Opin. Pharmacol. 6, 468–472.

    Article  CAS  PubMed  Google Scholar 

  • McConnell, M.J., Domínguez-Herrera, J., Smani, Y., López-Rojas, R., Docobo-Pérez, F., and Pachón, J. 2011. Vaccination with outer membrane complexes elicits rapid protective immunity to multidrug-resistant Acinetobacter baumannii. Infect. Immun. 79, 518–526.

    Article  CAS  PubMed  Google Scholar 

  • Mishra, B., Reiling, S., Zarena, D., and Wang, G. 2017. Host defense antimicrobial peptides as antibiotics: design and application strategies. Curr. Opin. Chem. Biol. 38, 87–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukhopadhyay, S., Prasad, A.S.B., Mehta, C.H., and Nayak, U.Y. 2020. Antimicrobial peptide polymers: No escape to ESKAPE pathogens-a review. World J. Microbiol. Biotechnol. 36, 131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nordström, R. and Malmsten, M. 2017. Delivery systems for antimicrobial peptides. Adv. Colloid Interface Sci. 242, 17–34.

    Article  PubMed  Google Scholar 

  • Paleos, C.M., Tsiourvas, D., Sideratou, Z., and Tziveleka, L. 2004. Acid-and salt-triggered multifunctional poly (propylene imine) dendrimer as a prospective drug delivery system. Biomacromolecules 5, 524–529.

    Article  CAS  PubMed  Google Scholar 

  • Park, Y.K., Lee, G.H., Baek, J.Y., Chung, D.R., Peck, K.R., Song, J.H., and Ko, K.S. 2010. A single clone of Acinetobacter baumannii, ST22, is responsible for high antimicrobial resistance rates of Acinetobacter spp. isolates that cause bacteremia and urinary tract infections in Korea. Microb. Drug Resist. 16, 143–149.

    Article  CAS  PubMed  Google Scholar 

  • Parra-Millán, R., Guerrero-Gómez, D., Ayerbe-Algaba, R., Pachón-Ibáñez, M.E., Miranda-Vizuete, A., Pachón, J., and Smani, Y. 2018. Intracellular trafficking and persistence of Acinetobacter baumannii requires transcription factor EB. mSphere 3, e00106–18.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peleg, A.Y., Seifert, H., and Paterson, D.L. 2008. Acinetobacter baumannii: emergence of a successful pathogen. Clin. Microbiol. Rev. 21, 538–582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng, S.Y., You, R.I., Lai, M.J., Lin, N.T., Chen, L.K., and Chang, K.C. 2017. Highly potent antimicrobial modified peptides derived from the Acinetobacter baumannii phage endolysin LysAB2. Sci. Rep. 7, 11477.

    Article  PubMed  PubMed Central  Google Scholar 

  • Perez, F., Hujer, A.M., Hujer, K.M., Decker, B.K., Rather, P.N., and Bonomo, R.A. 2007. Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 51, 3471–3484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Projan, S.J. 2003. Why is big Pharma getting out of antibacterial drug discovery? Curr. Opin. Microbiol. 6, 427–430.

    Article  PubMed  Google Scholar 

  • Qiu, H., KuoLee, R., Harris, G., Van Rooijen, N., Patel, G.B., and Chen, W. 2012. Role of macrophages in early host resistance to respiratory Acinetobacter baumannii infection. PLoS ONE 7, e40019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rice, L.B. 2008. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. The University of Chicago Press. Chicago, Illinois, USA.

    Book  Google Scholar 

  • Rolain, J.M., Diene, S.M., Kempf, M., Gimenez, G., Robert, C., and Raoult, D. 2013. Real-time sequencing to decipher the molecular mechanism of resistance of a clinical pan-drug-resistant Acinetobacter baumannii isolate from Marseille, France. Antimicrob. Agents Chemother. 57, 592–596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roscia, G., Falciani, C., Bracci, L., and Pini, A. 2013. The development of antimicrobial peptides as new antibacterial drugs. Curr. Protein Pept. Sci. 14, 641–649.

    Article  CAS  PubMed  Google Scholar 

  • Rosi, N.L. and Mirkin, C.A. 2005. Nanostructures in biodiagnostics. Chem. Rev. 105, 1547–1562.

    Article  CAS  PubMed  Google Scholar 

  • Ryu, M., Park, J., Yeom, J.H., Joo, M., and Lee, K. 2021. Rediscovery of antimicrobial peptides as therapeutic agents. J. Microbiol. 59, 113–123.

    Article  CAS  PubMed  Google Scholar 

  • Schmid, G. 1992. Large clusters and colloids. Metals in the embryonic state. Chem. Rev. 92, 1709–1727.

    Article  CAS  Google Scholar 

  • Shin, B. and Park, W. 2017. Antibiotic resistance of pathogenic Acinetobacter species and emerging combination therapy. J. Microbiol. 55, 837–849.

    Article  CAS  PubMed  Google Scholar 

  • Theaker, C., Azadian, B., and Soni, N. 2003. The impact of Acinetobacter baumannii in the intensive care unit. Anaesthesia 58, 271–274.

    Article  CAS  PubMed  Google Scholar 

  • Valero, C., Palomo, J.D.G., Matorras, P., Fernández-Mazarrasa, C., Fernández, C.G., and Fariñas, M.C. 2001. Acinetobacter bacteraemia in a teaching hospital, 1989–1998. Eur. J. Intern. Med. 12, 425–429.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S.H., Sheng, W.H., Chang, Y.Y., Wang, L.H., Lin, H.C., Chen, M.L., Pan, H.J., Ko, W.J., Chang, S.C., and Lin, F.Y. 2003. Healthcare-associated outbreak due to pan-drug resistant Acinetobacter baumannii in a surgical intensive care unit. J. Hosp. Infect. 53, 97–102.

    Article  CAS  PubMed  Google Scholar 

  • Wróblewska, M. 2006. Novel therapies of multidrug-resistant Pseudomonas aeruginosa and Acinetobacter spp. infections: the state of the art. Arch. Immunol. Ther. Exp. 54, 113–120.

    Article  Google Scholar 

  • Xiong, M.H., Bao, Y., Yang, X.Z., Zhu, Y.H., and Wang, J. 2014. Delivery of antibiotics with polymeric particles. Adv. Drug Deliv. Rev. 78, 63–76.

    Article  CAS  PubMed  Google Scholar 

  • Yeom, J.H., Lee, B., Kim, D., Lee, J., Kim, S., Bae, J., Park, Y., and Lee, K. 2016. Gold nanoparticle-DNA aptamer conjugate-assisted delivery of antimicrobial peptide effectively eliminates intra-cellular Salmonella enterica serovar Typhimurium. Biomaterials 104, 43–51.

    Article  CAS  PubMed  Google Scholar 

  • Yeung, A.T.Y., Gellatly, S.L., and Hancock, R.E. 2011. Multifunctional cationic host defence peptides and their clinical applications. Cell. Mol. Life Sci. 68, 2161.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Drs. Minkyung Ryu and Hanyong Jin for their technical assistance on this work. This research was supported by the Chung-Ang University Graduate Research Scholarship grants in 2020 and the National Research Foundation of Korea [NRF-2021R1A2C3008934 to K. L. and NRF-2021R1-I1A1A01056162 to J-H. Y].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeehyeon Bae or Kangseok Lee.

Ethics declarations

All experimental procedures were reviewed and approved by the Chung-Ang University Support Center for Animal Experiments, and all research methods have been conducted in accordance with the guidelines and regulations. Animal handling guidelines were approved by the Chung-Ang University Institutional Animal Case and Use Committee (Approval #CAU2020-00115).

Additional information

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J., Shin, E., Yeom, JH. et al. Gold nanoparticle-DNA aptamer-assisted delivery of antimicrobial peptide effectively inhibits Acinetobacter baumannii infection in mice. J Microbiol. 60, 128–136 (2022). https://doi.org/10.1007/s12275-022-1620-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-022-1620-3

Keywords

Navigation