Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections

Abstract

Antibiotic-resistant bacterial infections arising from acquired resistance and/or through biofilm formation necessitate the development of innovative ‘outside of the box’ therapeutics. Nanomaterial-based therapies are promising tools to combat bacterial infections that are difficult to treat, featuring the capacity to evade existing mechanisms associated with acquired drug resistance. In addition, the unique size and physical properties of nanomaterials give them the capability to target biofilms, overcoming recalcitrant infections. In this Review, we highlight the general mechanisms by which nanomaterials can be used to target bacterial infections associated with acquired antibiotic resistance and biofilms. We emphasize design elements and properties of nanomaterials that can be engineered to enhance potency. Lastly, we present recent progress and remaining challenges for widespread clinical implementation of nanomaterials as antimicrobial therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nano versus micro — antimicrobial mechanisms of nanomaterials.
Fig. 2: Examples of nanomaterial-based strategies used to combat bacterial infections.
Fig. 3: Eradicating biofilms using nanoparticles.

Similar content being viewed by others

References

  1. Ventola, C. L. The antibiotic resistance crisis part 1: causes and threats. PT 40, 277–283 (2015).

    Google Scholar 

  2. Michael, C. A., Dominey-Howes, D. & Labbate, M. The antimicrobial resistance crisis: Causes, consequences, and management. Front. Public Health 2, 145 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  3. CDC. Antibiotic Resistance threats in the United States, 2019. (Department of Health and Human Services, CDC, 2019).

  4. WHO. Global Antimicrobial Resistance Surveillance System (GLASS) (WHO, 2017).

  5. Naylor, N. R. et al. Estimating the burden of antimicrobial resistance: a systematic literature review. Antimicrob. Resist. Infect. Control. 7, 58 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Willyard, C. The drug-resistant bacteria that pose the greatest health threats. Nature 543, 15 (2017). This article ranks the most dangerous bacteria that pose urgent threats to public health.

    Article  CAS  PubMed  Google Scholar 

  7. Lebeaux, D., Chauhan, A., Rendueles, O. & Beloin, C. From in vitro to in vivo models of bacterial biofilm-related infections. Pathogens 2, 288–356 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Lebeaux, D., Ghigo, J.-M. & Beloin, C. Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol. Mol. Biol. Rev. 78, 510–543 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bjarnsholt, T. The role of bacterial biofilms in chronic infections. APMIS 121, 1–58 (2013).

    Article  CAS  Google Scholar 

  10. Van Acker, H., Van Dijck, P. & Coenye, T. Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms. Trends Microbiol. 22, 326–333 (2014).

    Article  PubMed  CAS  Google Scholar 

  11. Flemming, H. & Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Ventola, C. L. The antibiotic resistance crisis part 2: management strategies and new agents. PT 40, 344–352 (2015).

    Google Scholar 

  13. Aminov, R. I. A brief history of the antibiotic era: lessons learned and challenges for the future. Front. Microbiol. 134, 1–7 (2010).

    Google Scholar 

  14. Arciola, C. R., Campoccia, D. & Montanaro, L. Implant infections: adhesion, biofilm formation and immune evasion. Nat. Rev. Microbiol. 16, 397–409 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Wu, Y.-K., Cheng, N.-C. & Cheng, C.-M. Biofilms in chronic wounds: pathogenesis and diagnosis. Trends Biotechnol. 37, 505–517 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Wang, L. S., Gupta, A. & Rotello, V. M. Nanomaterials for the treatment of bacterial biofilms. ACS Infect. Dis. 2, 3–4 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Gupta, A., Landis, R. F. & Rotello, V. M. Nanoparticle-based antimicrobials: surface functionality is critical. F1000Res. 5, 364 (2016).

    Article  Google Scholar 

  18. Pelgrift, R. Y. & Friedman, A. J. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv. Drug Deliv. Rev. 65, 1803–1815 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Soenen, S. J. et al. Cellular toxicity of inorganic nanoparticles: common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 6, 446–465 (2011).

    Article  CAS  Google Scholar 

  20. Baptista, P. V. et al. Nano-strategies to fight multidrug resistant bacteria — “a battle of the titans”. Front. Microbiol. 9, 1–26 (2018).

    Article  Google Scholar 

  21. Gupta, A., Mumtaz, S., Li, C.-H., Hussain, I. & Rotello, V. M. Combatting antibiotic-resistant bacteria using nanomaterials. Chem. Soc. Rev. 48, 415–427 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Matsuzaki, K. Control of cell selectivity of antimicrobial peptides. Biochim. Biophys. Acta Biomembr. 1788, 1687–1692 (2009).

    Article  CAS  Google Scholar 

  23. Palermo, E. F. & Kuroda, K. Structural determinants of antimicrobial activity in polymers which mimic host defense peptides. Appl. Microbiol. Biotechnol. 87, 1605–1615 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. El Badawy, A. M. et al. Surface charge-dependent toxicity of silver nanoparticles. Environ. Sci. Technol. 45, 283–287 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Huo, S. et al. Fully zwitterionic nanoparticle antimicrobial agents through tuning of core size and ligand structure. ACS Nano 10, 8732–8737 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Malek, I. et al. Vertically aligned multi walled carbon nanotubes prevent biofilm formation of medically relevant bacteria. J. Mater. Chem. B 4, 5228–5235 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Hurdle, J. G., O’Neill, A. J., Chopra, I. & Lee, R. E. Targeting bacterial membrane function: An underexploited mechanism for treating persistent infections. Nat. Rev. Microbiol. 9, 62–75 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nederberg, F. et al. Biodegradable nanostructures with selective lysis of microbial membranes. Nat. Chem. 3, 409–414 (2011). This study reports a biodegradable antimicrobial polymeric nanoparticle that disrupted cell membranes of MRSA at concentrations that did not lyse mammalian cells.

    Article  CAS  PubMed  Google Scholar 

  29. Wang, X., Liu, X. & Han, H. Evaluation of antibacterial effects of carbon nanomaterials against copper-resistant Ralstonia solanacearum. Colloids Surf. B Biointerfaces 103, 136–142 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Landis, R. F. et al. Biodegradable nanocomposite antimicrobials for the eradication of multidrug-resistant bacterial biofilms without accumulated resistance. J. Am. Chem. Soc. 140, 6176–6182 (2018). This study demonstrates the use of polymers for delivery of antimicrobial essential oils, resulting in biodegradable nanocomposites that eliminated bacterial biofilms without toxic effects on fibroblast cells and with no observed resistance development after multiple serial passages.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lemire, J. A., Harrison, J. J. & Turner, R. J. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 11, 371–384 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Memar, M. Y., Ghotaslou, R., Samiei, M. & Adibkia, K. Antimicrobial use of reactive oxygen therapy: current insights. Infect. Drug Resist. 11, 567–576 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Miller, K. P., Wang, L., Benicewicz, B. C. & Decho, A. W. Inorganic nanoparticles engineered to attack bacteria. Chem. Soc. Rev. 44, 7787–7807 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Slavin, Y. N., Asnis, J., Häfeli, U. O. & Bach, H. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 15, 65 (2017).

    Article  CAS  Google Scholar 

  35. Dong, X., Liang, W., Meziani, M. J., Sun, Y. P. & Yang, L. Carbon dots as potent antimicrobial agents. Theranostics 10, 671–686 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Singh, R., Smitha, M. S. & Singh, S. P. The role of nanotechnology in combating multi-drug resistant bacteria. J. Nanosci. Nanotechnol. 14, 4745–4756 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Pramanik, A., Laha, D., Bhattacharya, D., Pramanik, P. & Karmakar, P. A novel study of antibacterial activity of copper iodide nanoparticle mediated by DNA and membrane damage. Colloids Surf. B Biointerfaces 96, 50–55 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Matai, I. et al. Antibacterial activity and mechanism of Ag–ZnO nanocomposite on S. aureus and GFP-expressing antibiotic resistant E. coli. Colloids Surf. B Biointerfaces 115, 359–367 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Lopez, N. & Nørskov, J. K. Catalytic CO oxidation by a gold nanoparticle:  a density functional study. J. Am. Chem. Soc. 124, 11262–11263 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Bernardos, A. et al. Mesoporous silica-based materials with bactericidal properties. Small 15, 1900669 (2019).

    Article  CAS  Google Scholar 

  41. Tao, Y., Ju, E., Ren, J. & Qu, X. Bifunctionalized mesoporous silica-supported gold nanoparticles: intrinsic oxidase and peroxidase catalytic activities for antibacterial applications. Adv. Mater. 27, 1097–1104 (2015). This study shows broad-spectrum antibacterial and antibiofilm properties of mesoporous silica-supported AuNPs which mimic the catalytic activities of oxidase and peroxidase.

    Article  CAS  PubMed  Google Scholar 

  42. Shamaila, S. et al. Gold nanoparticles: an efficient antimicrobial agent against enteric bacterial human pathogen. Nanomaterials 6, 1–10 (2016).

    Article  CAS  Google Scholar 

  43. Chatterjee, A. K., Chakraborty, R. & Basu, T. Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology 25, 135101 (2014).

    Article  PubMed  CAS  Google Scholar 

  44. Zhao, Y. et al. Small molecule-capped gold nanoparticles as potent antibacterial agents that target Gram-negative bacteria. J. Am. Chem. Soc. 132, 12349–12356 (2010). This article demonstrates the use of pyrimidine-capped AuNPs as antibacterial agents to disrupt bacterial cell membranes, interact with DNA and inhibit protein synthesis, ultimately leading to bacterial cell death.

    Article  CAS  PubMed  Google Scholar 

  45. Ashmore, D. et al. Evaluation of E. coli inhibition by plain and polymer-coated silver nanoparticles. Rev. Inst. Med. Trop. Sao Paulo 60, e18 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Ventola, C. L. Progress in nanomedicine: Approved and investigational nanodrugs. PT 42, 742–755 (2017).

    Google Scholar 

  47. Mu, H. et al. Potent antibacterial nanoparticles against biofilm and intracellular bacteria. Sci. Rep. 6, 18877 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Abdelghany, S. M. et al. Gentamicin-loaded nanoparticles show improved antimicrobial effects towards Pseudomonas aeruginosa infection. Int. J. Nanomed. 7, 4053–4063 (2012).

    CAS  Google Scholar 

  49. Brown, A. N. et al. Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Appl. Environ. Microbiol. 78, 2768–2774 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li, C.-H. et al. Phytochemical-based nanocomposites for the treatment of bacterial biofilms. ACS Infect. Dis. 5, 1590–1596 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Forier, K. et al. Probing the size limit for nanomedicine penetration into Burkholderia multivorans and Pseudomonas aeruginosa biofilms. J. Control. Rel. 195, 21–28 (2014).

    Article  CAS  Google Scholar 

  52. Bera, S. & Mondal, D. in Drug Targeting and Stimuli Sensitive Drug Delivery Systems (ed. Grumezescu, A. M.) 271–302 (William Andrew Publishing, 2018).

  53. Wang, Y. et al. Antibiotic-loaded, silver core-embedded mesoporous silica nanovehicles as a synergistic antibacterial agent for the treatment of drug-resistant infections. Biomaterials 101, 207–216 (2016). This study features mesoporous silica nanovehicles loaded with levofloxacin and a silver core that achieved synergistic elimination of bacteria in vitro and in vivo.

    Article  CAS  PubMed  Google Scholar 

  54. Canaparo, R. et al. Recent developments in antibacterial therapy: Focus on stimuli-responsive drug-delivery systems and therapeutic nanoparticles. Molecules 24, 1991 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  55. Kalhapure, R. S. et al. pH-responsive chitosan nanoparticles from a novel twin-chain anionic amphiphile for controlled and targeted delivery of vancomycin. Colloids Surf. B Biointerfaces 158, 650–657 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Radovic-Moreno, A. F. et al. Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics. ACS Nano 6, 4279–4287 (2012). This work shows delivery of vancomycin using a nanoparticle-based strategy that takes advantage of localized acidity at the bacterial infection site, with the drug carrier switching to a positively charged nanoparticle at low pH.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wu, Y., Song, Z., Wang, H. & Han, H. Endogenous stimulus-powered antibiotic release from nanoreactors for a combination therapy of bacterial infections. Nat. Commun. 10, 4464 (2019). This article features a toxin-responsive antimicrobial nanoreactor that achieves targeted and controlled release of rifampicin. On contact with bacteria, the nanoreactor can capture bacterial toxins that catalyse a cascade of events that ultimately promote rifampin release and elimination of bacteria.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Huang, C. M. et al. Eradication of drug resistant Staphylococcus aureus by liposomal oleic acids. Biomaterials 32, 214–221 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Mulani, M. S., Kamble, E. E., Kumkar, S. N., Tawre, M. S. & Pardesi, K. R. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: a review. Front. Microbiol. 10, 539 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kamaruzzaman, N. F. et al. Antimicrobial polymers: the potential replacement of existing antibiotics? Int. J. Mol. Sci. 200, 2747 (2019).

    Article  CAS  Google Scholar 

  61. Jiang, L., Lin, J., Taggart, C. C., Bengoechea, J. A. & Scott, C. J. Nanodelivery strategies for the treatment of multidrug-resistant bacterial infections. J. Interdiscip. Nanomed. 3, 111–121 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Gupta, A. et al. Functionalized polymers enhance permeability of antibiotics in gram-negative MDR bacteria and biofilms for synergistic antimicrobial therapy. Adv. Ther. https://doi.org/10.1002/adtp.202000005 (2020).

  63. Lam, S. J. et al. Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers. Nat. Microbiol. 1, 16162 (2016). This study uses in vitro and in vivo models to demonstrate the potential of structurally nanoengineered antimicrobial peptide polymers with multimodal antimicrobial mechanisms to treat infections caused by Gram-negative bacteria.

    Article  CAS  PubMed  Google Scholar 

  64. Pushparaj Selvadoss, P., Nellore, J., Balaraman Ravindrran, M. & Sekar, U. Novel pyochelin-based PEGylated liposomes for enhanced delivery of antibiotics against resistant clinical isolates of pseudomonas aeruginosa. Artif. Cells Nanomed. Biotechnol. 46, 2043–2053 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Hsu, C.-Y., Yang, S.-C., Sung, C. T., Weng, Y.-H. & Fang, J.-Y. Anti-MRSA malleable liposomes carrying chloramphenicol for ameliorating hair follicle targeting. Int. J. Nanomed. 12, 8227–8238 (2017).

    Article  CAS  Google Scholar 

  66. Singla, S., Harjai, K., Katare, O. P. & Chhibber, S. Encapsulation of bacteriophage in liposome accentuates its entry in to macrophage and shields it from neutralizing antibodies. PLoS ONE 11, e0153777 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Casciaro, B. et al. Poly(lactide-co-glycolide) Nanoparticles for prolonged therapeutic efficacy of esculentin-1a-derived antimicrobial peptides against Pseudomonas aeruginosa lung infection: in vitro and in vivo studies. Biomacromolecules 20, 1876–1888 (2019). This study demonstrates delivery of antimicrobial peptides using PLGA nanoparticles to treat lung bacterial infections. The peptide-loaded nanoparticle displays efficient P. aeruginosa growth inhibition in vitro and in vivo.

    Article  CAS  PubMed  Google Scholar 

  68. Campoy, E. & Colombo, M. I. Autophagy in intracellular bacterial infection. Biochim. Biophys. Acta https://doi.org/10.1016/j.bbamcr.2009.03.003 (2009).

  69. Eng, S. K. et al. Salmonella: a review on pathogenesis, epidemiology and antibiotic resistance. Front. Life Sci. 8, 284–293 (2015).

    Article  CAS  Google Scholar 

  70. Ibarra, J. A. & Steele-Mortimer, O. Salmonella - the ultimate insider. Salmonella virulence factors that modulate intracellular survival. Cell. Microbiol. 11, 1579–1586 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kamaruzzaman, N. F., Kendall, S. & Good, L. Targeting the hard to reach: challenges and novel strategies in the treatment of intracellular bacterial infections. Br. J. Pharmacol. 174, 2225–2236 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Xie, S. et al. Enhanced intracellular delivery and antibacterial efficacy of enrofloxacin-loaded docosanoic acid solid lipid nanoparticles against intracellular Salmonella. Sci. Rep. https://doi.org/10.1038/srep41104 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Menina, S. et al. Bioinspired liposomes for oral delivery of colistin to combat intracellular infections by Salmonella enterica. Adv. Healthc. Mater. 8, e1900564 (2019).

    Article  PubMed  CAS  Google Scholar 

  74. Yang, S. et al. Bacteria-targeting nanoparticles with microenvironment-responsive antibiotic release to eliminate intracellular Staphylococcus aureus and associated infection. ACS Appl. Mater. Interfaces 10, 14299–14311 (2018). This study reports a gentamicin delivery platform composed of mesoporous silica nanoparticles decorated with a toxin-responsive lipid bilayer shell and a bacterium-targeting peptide. This nanovehicle system demonstrates efficient gentamicin loading and intracellular release that promote elimination of intracellular S. aureus in vitro and in vivo.

    Article  CAS  PubMed  Google Scholar 

  75. Russell, D. G. Mycobacterium tuberculosis: here today, and here tomorrow. Nat. Rev. Mol. Cell Biol. 8, 569–577 (2001).

    Article  CAS  Google Scholar 

  76. Yang, C. et al. Broad-spectrum antimicrobial star polycarbonates functionalized with mannose for targeting bacteria residing inside immune cells. Adv. Healthc. Mater. 5, 1272–1281 (2016).

    Article  CAS  PubMed  Google Scholar 

  77. Ellis, T. et al. Multimerallic microparticles increase the potency of rifampicin against intracellular Mycobacterium tuberculosis. ACS Nano 12, 5228–5240 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Yeom, J. H. et al. Gold nanoparticle-DNA aptamer conjugate-assisted delivery of antimicrobial peptide effectively eliminates intracellular Salmonella enterica serovar Typhimurium. Biomaterials 104, 43–51 (2016). This article features the use of antimicrobial peptides to treat intracellular Salmonella Typhimurium infection. A AuNP–DNA aptamer conjugate loaded with antimicrobial peptides displayed active delivery into mammalian cells and elimination of residing bacteria in an infected mouse.

    Article  CAS  PubMed  Google Scholar 

  79. Lee, B. et al. Antimicrobial peptide-loaded gold nanoparticle-DNA aptamer conjugates as highly effective antibacterial therapeutics against Vibrio vulnificus. Sci. Rep. 7, 13572 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Patel, R. Biofilms and antimicrobial resistance. Clin. Orthop. Relat. Res. 437, 41–47 (2005).

    Article  Google Scholar 

  81. Flemming, H.-C. et al. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563–575 (2016).

    Article  CAS  PubMed  Google Scholar 

  82. Teirlinck, E., Samal, S. K., Coenye, T. & Braeckmans, K. in Functionalized Nanomaterials for the Management of Microbial Infection: A Strategy to Address Microbial Drug Resistance Micro and Nano Technologies (eds Boukherroub, R., Szunerits, S. & Drider, D.) 49–76 (Elsevier, 2017).

  83. Fulaz, S., Vitale, S., Quinn, L. & Casey, E. Nanoparticle–biofilm interactions: the role of the EPS matrix. Trends Microbiol. 27, 915–926 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. Gupta, A. et al. Engineered polymer nanoparticles with unprecedented antimicrobial efficacy and therapeutic indices against multidrug-resistant bacteria and biofilms. J. Am. Chem. Soc. 140, 12137–12143 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Peulen, T. O. & Wilkinson, K. J. Diffusion of nanoparticles in a biofilm. Environ. Sci. Technol. 45, 3367–3373 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Liu, L. et al. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat. Nanotechnol. 4, 457–463 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Wu, J. et al. Responsive assembly of silver nanoclusters with a biofilm locally amplified bactericidal effect to enhance treatments against multi-drug-resistant bacterial infections. ACS Cent. Sci. 5, 1366–1376 (2019). This study illustrates that by taking advantage of the acidic pH of biofilms, pH-responsive silver nanoantibiotics can penetrate and eliminate MRSA biofilms in vitro and in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mahmoudi, M. & Serpooshan, V. Silver-coated engineered magnetic nanoparticles are promising for the success in the fight against antibacterial resistance threat. ACS Nano 6, 2656–2664 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Meers, P. et al. Biofilm penetration, triggered release and in vivo activity of inhaled liposomal amikacin in chronic Pseudomonas aeruginosa lung infections. J. Antimicrob. Chemother. 61, 859–868 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Koo, H., Allan, R. N., Howlin, R. P., Stoodley, P. & Hall-Stoodley, L. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat. Rev. Microbiol. 15, 740–755 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Baelo, A. et al. Disassembling bacterial extracellular matrix with DNase-coated nanoparticles to enhance antibiotic delivery in biofilm infections. J. Control. Rel. 209, 150–158 (2015).

    Article  CAS  Google Scholar 

  92. Habimana, O. et al. One particle, two targets: a combined action of functionalised gold nanoparticles, against Pseudomonas fluorescens biofilms. J. Colloid Interface Sci. 526, 419–428 (2018).

    Article  CAS  PubMed  Google Scholar 

  93. Li, J. et al. A new tool to attack biofilms: driving magnetic iron-oxide nanoparticles to disrupt the matrix. Nanoscale 11, 6905–6915 (2019).

    Article  CAS  PubMed  Google Scholar 

  94. Rabin, N. et al. Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med. Chem. 7, 493–512 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Ikuma, K., Decho, A. W. & Lau, B. L. T. When nanoparticles meet biofilms — interactions guiding the environmental fate and accumulation of nanoparticles. Front. Microbiol. 6, 591 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Singh, B. N. et al. Bactericidal, quorum quenching and anti-biofilm nanofactories: a new niche for nanotechnologists. Crit. Rev. Biotechnol. 37, 525–540 (2017).

    Article  CAS  PubMed  Google Scholar 

  97. Miller, K. P. et al. Engineering nanoparticles to silence bacterial communication. Front. Microbiol. 6, 1–7 (2015). This proof-of-concept work demonstrates the potential of silencing bacterial communication as a therapeutic strategy.

    Article  CAS  Google Scholar 

  98. Bandara, H. M. H. N. et al. Incorporation of farnesol significantly increases the efficacy of liposomal ciprofloxacin against Pseudomonas aeruginosa biofilms in vitro. Mol. Pharm. 13, 2760–2770 (2016).

    Article  CAS  PubMed  Google Scholar 

  99. Omwenga, E. O., Hensel, A., Shitandi, A. & Goycoolea, F. M. Chitosan nanoencapsulation of flavonoids enhances their quorum sensing and biofilm formation inhibitory activities against an E. coli top 10 biosensor. Colloids Surf. B Biointerfaces 164, 125–133 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Ilk, S., Sağlam, N., Özgen, M. & Korkusuz, F. Chitosan nanoparticles enhances the anti-quorum sensing activity of kaempferol. Int. J. Biol. Macromol. 94, 653–662 (2017).

    Article  CAS  PubMed  Google Scholar 

  101. Al-Shabib, N. A. et al. Biogenic synthesis of zinc oxide nanostructures from Nigella sativa seed: Prospective role as food packaging material inhibiting broad-spectrum quorum sensing and biofilm. Sci. Rep. 6, 36761 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gómez-Gómez, B. et al. Selenium and tellurium-based nanoparticles as interfering factors in quorum sensing-regulated processes: violacein production and bacterial biofilm formation. Metallomics 11, 1104–1114 (2019).

    Article  PubMed  Google Scholar 

  103. Barbosa, D. B. et al. in Wound Healing Biomaterials (ed. Ågren, M. S) 79–105 (Elsevier, 2016).

  104. Wi, Y. M. & Patel, R. Understanding biofilms and novel approaches to the diagnosis, prevention, and treatment of medical device-associated infections. Infect. Dis. Clin. North. Am. 32, 915–929 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Bowen, W. H., Burne, R. A., Wu, H. & Koo, H. Oral biofilms: pathogens, matrix, and polymicrobial interactions in microenvironments. Trends Microbiol. 26, 229–242 (2018).

    Article  CAS  PubMed  Google Scholar 

  106. Allaker, R. P. & Yuan, Z. in Nanobiomaterials in Clinical Dentistry 2nd edn (eds Subramani, K. & Ahmed, W.) 243–275 (Elsevier, 2019).

  107. Zhou, Z. et al. pH-activated nanoparticles with targeting for the treatment of oral plaque biofilm. J. Mater. Chem. B 6, 586–592 (2018).

    Article  CAS  PubMed  Google Scholar 

  108. Zhou, J. et al. Characterization and optimization of pH-responsive polymer nanoparticles for drug delivery to oral biofilms. J. Mater. Chem. B 4, 3075–3085 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Zhao, Z., Ding, C., Wang, Y., Tan, H. & Li, J. pH-responsive polymeric nanocarriers for efficient killing of cariogenic bacteria in biofilms. Biomater. Sci. 7, 1643–1651 (2019).

    Article  CAS  PubMed  Google Scholar 

  110. Gao, L. et al. Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries in vivo. Biomaterials 101, 272–284 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Naha, P. C. et al. Dextran-coated iron oxide nanoparticles as biomimetic catalysts for localized and pH-activated biofilm disruption. ACS Nano 13, 4960–4971 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Liu, Y. et al. Topical ferumoxytol nanoparticles disrupt biofilms and prevent tooth decay in vivo via intrinsic catalytic activity. Nat. Commun. 9, 2920 (2018). This study shows the potential of ferumoxytol nanoparticles, which generate free radicals from H2O2, as a topical oral treatment for tooth decay, caused by oral biofilms, using ex vivo and in vivo models.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Dai, X. et al. Nano-formulated curcumin accelerates acute wound healing through Dkk-1-mediated fibroblast mobilization and MCP-1-mediated anti-inflammation. NPG Asia Mater. 9, e368 (2017).

    Article  CAS  Google Scholar 

  114. Lantis, J. & Paredes, J. Permissive maintenance debridement – the role of enzymatic debridement in chronic wound care. Wounds Int. 8, 7–13 (2017).

    Google Scholar 

  115. Omar, A., Wright, B. J., Schultz, G., Burrell, R. & Nadworny, P. Microbial biofilms and chronic wounds. Microorganisms https://doi.org/10.3390/microorganisms5010009 (2017).

  116. Wilkinson, L. J., White, R. J. & Chipman, J. K. Silver and nanoparticles of silver in wound dressings: a review of efficacy and safety. J. Wound Care 20, 543–549 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Kim, M. Nanoparticle-based therapies for wound biofilm infection: opportunities and challenges. IEEE Trans. Nanobioscience 15, 294–306 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Parani, M., Lokhande, G., Singh, A. & Gaharwar, A. K. Engineered nanomaterials for infection control and healing acute and chronic wounds. ACS Appl. Mater. Interfaces 8, 10049–10069 (2016).

    Article  CAS  PubMed  Google Scholar 

  119. Ahire, J. J., Hattingh, M., Neveling, D. P. & Dicks, L. M. T. Copper-containing anti-biofilm nanofiber scaffolds as a wound dressing material. PLoS ONE 11, e0152755 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Li, J. et al. Block copolymer nanoparticles remove biofilms of drug-resistant Gram-positive bacteria by nanoscale bacterial debridement. Nano Lett. 18, 4180–4187 (2018). This work uses the block copolymer DA95B5 as a potential treatment for wound biofilms; DA95B5 diffused across biofilm matrices and promoted bacterial dispersal, resulting in biofilm elimination without apparent emergence of resistance.

    Article  CAS  PubMed  Google Scholar 

  121. Wang, J. et al. pH-switchable antimicrobial nanofiber networks of hydrogel eradicate biofilm and rescue stalled healing in chronic wounds. ACS Nano 13, 11686–11697 (2019).

    Article  CAS  PubMed  Google Scholar 

  122. Caster, J. M., Patel, A. N., Zhang, T. & Wang, A. Investigational nanomedicines in 2016: a review of nanotherapeutics currently undergoing clinical trials. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 9, e1416 (2017). This review provides a summary of nanotherapeutics that entered clinical trials, which mainly include antimicrobial and anticancer nanomaterials.

    Article  Google Scholar 

  123. Bjarnsholt, T. et al. The in vivo biofilm. Trends Microbiol. 21, 466–474 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01315691 (2018).

  125. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02104245 (2018).

  126. Bush, K. Alarming β-lactamase-mediated resistance in multidrug-resistant Enterobacteriaceae. Curr. Opin. Microbiol. 13, 558–564 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Bush, K. Antimicrobial agents targeting bacterial cell walls and cell membranes. Rev. Sci. Tech. 31, 43–56 (2012).

    Article  CAS  PubMed  Google Scholar 

  128. Kapoor, G., Saigal, S. & Elongavan, A. Action and resistance mechanisms of antibiotics: a guide for clinicians. J. Anaesthesiol. Clin. Pharmacol. 33, 300–305 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Courvalin, P. Vancomycin resistance in Gram-positive cocci. Clin. Infect. Dis. 42, S25–S34 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Falagas, M. E., Rafailidis, P. I. & Matthaiou, D. K. Resistance to polymyxins: mechanisms, frequency and treatment options. Drug Resist. Updat. 13, 132–138 (2010).

    Article  CAS  PubMed  Google Scholar 

  131. Peterson, E. & Kaur, P. Antibiotic resistance mechanisms in bacteria: relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Front. Microbiol. 9, 2928 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Gupta, A. et al. Synergistic antimicrobial therapy using nanoparticles and antibiotics for the treatment of multidrug-resistant bacterial infection. Nano Futur. 1, 015004 (2017).

    Article  CAS  Google Scholar 

  133. Gupta, D., Singh, A. & Khan, A. U. Nanoparticles as efflux pump and biofilm inhibitor to rejuvenate bactericidal effect of conventional antibiotics. Nanoscale Res. Lett. 12, 454 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/results/NCT00659204 (2008).

  135. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00337714 (2011).

  136. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02726646 (2018).

  137. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01167985 (2013).

  138. Li, X. et al. Control of nanoparticle penetration into biofilms through surface design. Chem. Commun. 51, 282–285 (2015). This work uses quantum dots to assess the biofilm penetration profile of nanoparticles with different surface chemical properties.

    Article  CAS  Google Scholar 

  139. Vert, M. et al. Terminology for biorelated polymers and applications (IUPAC recommendations 2012). Pure Appl. Chem. 84, 377–410 (2012).

    Article  CAS  Google Scholar 

  140. Natan, M. & Banin, E. From Nano to micro: using nanotechnology to combat microorganisms and their multidrug resistance. FEMS Microbiol. Rev. 41, 302–322 (2017).

    Article  CAS  PubMed  Google Scholar 

  141. Li, X. et al. Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano 8, 10682–10686 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lara, H. H., Ayala-Núñez, N. V., del Turrent, L. C. I. & Padilla, C. R. Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J. Microbiol. Biotechnol. 26, 615–621 (2010).

    Article  CAS  Google Scholar 

  143. Guzman, M., Dille, J. & Godet, S. Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomedicine 8, 37–45 (2012).

    Article  CAS  PubMed  Google Scholar 

  144. Durmus, N. G., Taylor, E. N., Kummer, K. M. & Webster, T. J. Enhanced efficacy of superparamagnetic iron oxide nanoparticles against antibiotic-resistant biofilms in the presence of metabolites. Adv. Mater. 25, 5706–5713 (2013).

    Article  CAS  PubMed  Google Scholar 

  145. Prabhu, S. & Poulose, E. K. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett. 2, 32 (2012).

    Article  Google Scholar 

  146. Qing, Y. et al. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int. J. Nanomed. 13, 3311–3327 (2018).

    Article  CAS  Google Scholar 

  147. Al-Jumaili, A., Alancherry, S., Bazaka, K. & Jacob, M. V. Review on the antimicrobial properties of carbon nanostructures. Materials 10, 1–26 (2017).

    Article  CAS  Google Scholar 

  148. Zou, X., Zhang, L., Wang, Z. & Luo, Y. Mechanisms of the antimicrobial activities of graphene materials. J. Am. Chem. Soc. 138, 2064–2077 (2016).

    Article  CAS  PubMed  Google Scholar 

  149. Song, J. & Jang, J. Antimicrobial polymer nanostructures: synthetic route, mechanism of action and perspective. Adv. Colloid Interface Sci. 203, 37–50 (2014).

    Article  CAS  PubMed  Google Scholar 

  150. Landis, R. F. et al. Cross-linked polymer-stabilized nanocomposites for the treatment of bacterial biofilms. ACS Nano 11, 946–952 (2017).

    Article  CAS  PubMed  Google Scholar 

  151. Reymond, J. L., Bergmann, M. & Darbrea, T. Glycopeptide dendrimers as Pseudomonas aeruginosa biofilm inhibitors. Chem. Soc. Rev. 42, 4814–4822 (2013).

    Article  CAS  PubMed  Google Scholar 

  152. Mei, L., Lu, Z., Zhang, X., Li, C. & Jia, Y. Polymer-Ag nanocomposites with enhanced antimicrobial activity against bacterial infection. ACS Appl. Mater. Interfaces 6, 15813–15821 (2014).

    Article  CAS  PubMed  Google Scholar 

  153. Jaiswal, M., Dudhe, R. & Sharma, P. K. Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech. 5, 123–127 (2015).

    Article  PubMed  Google Scholar 

  154. Kumari, S. et al. Thymol nanoemulsion exhibits potential antibacterial activity against bacterial pustule disease and growth promotory effect on soybean. Sci. Rep. 8, 6650 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Chang, H.-I. & Yeh, M.-K. Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int. J. Nanomed. 7, 49–60 (2012).

    CAS  Google Scholar 

  156. Forier, K. et al. Lipid and polymer nanoparticles for drug delivery to bacterial biofilms. J. Control. Rel. 190, 607–623 (2014).

    Article  CAS  Google Scholar 

  157. Chen, M. et al. Bacterial biofilm destruction by size/surface charge-adaptive micelles. Nanoscale 11, 1410–1422 (2019).

    Article  CAS  PubMed  Google Scholar 

  158. Chen, W. et al. Bacterial acidity-triggered antimicrobial activity of self-assembling peptide nanofibers. J. Mater. Chem. B 7, 2915–2919 (2019).

    Article  CAS  Google Scholar 

  159. Daddi Oubekka, S., Briandet, R., Fontaine-Aupart, M.-P. & Steenkeste, K. Correlative time-resolved fluorescence microscopy to assess antibiotic diffusion-reaction in biofilms. Antimicrob. Agents Chemother. 56, 3349–3358 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O. & Piddock, L. J. V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13, 42–51 (2015).

    Article  CAS  PubMed  Google Scholar 

  161. Kim, J., Hahn, J. S., Franklin, M. J., Stewart, P. S. & Yoon, J. Tolerance of dormant and active cells in Pseudomonas aeruginosa PA01 biofilm to antimicrobial agents. J. Antimicrob. Chemother. 63, 129–135 (2009).

    Article  CAS  PubMed  Google Scholar 

  162. Tseng, B. S. et al. The extracellular matrix protects Pseudomonas aeruginosa biofilms by limiting the penetration of tobramycin. Environ. Microbiol. 15, 2865–2878 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Del Pozo, J. L. & Patel, R. The challenge of treating biofilm-associated bacterial infections. Clin. Pharmacol. Ther. 82, 204–209 (2007).

    Article  PubMed  CAS  Google Scholar 

  164. Petros, R. A. & Desimone, J. M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 9, 615–627 (2010).

    Article  CAS  PubMed  Google Scholar 

  165. Simon-Deckers, A. et al. Size-, composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environ. Sci. Technol. 43, 8423–8429 (2009).

    Article  CAS  PubMed  Google Scholar 

  166. Hayden, S. C. et al. Aggregation and interaction of cationic nanoparticles on bacterial surfaces. J. Am. Chem. Soc. 134, 6920–6923 (2012).

    Article  CAS  PubMed  Google Scholar 

  167. Morrow, J. B., P., C. A. & Holbrook, R. D. Association of quantum dot nanoparticles with Pseudomonas aeruginosa biofilm. J. Environ. Qual. 39, 1934–1941 (2010).

    Article  CAS  PubMed  Google Scholar 

  168. Nevius, B. A., Chen, Y. P., Ferry, J. L. & Decho, A. W. Surface-functionalization effects on uptake of fluorescent polystyrene nanoparticles by model biofilms. Ecotoxicology 21, 2205–2213 (2012).

    Article  CAS  PubMed  Google Scholar 

  169. Pal, S., Tak, Y. K. & Song, J. M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73, 1712 LP–1711720 (2007).

    Article  CAS  Google Scholar 

  170. Slomberg, D. L. et al. Role of size and shape on biofilm eradication for nitric oxide-releasing silica nanoparticles. ACS Appl. Mater. Interfaces 5, 9322–9329 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the US National Institutes of Health (AI134770).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Vincent M. Rotello.

Ethics declarations

Competing interests

R.P. reports grants from CD Diagnostics, Merck, Hutchison Biofilm Medical Solutions, Accelerate Diagnostics, ContraFect, TenNor Therapeutics Limited and Shionogi. R.P. is a consultant to Curetis, Specific Technologies, Next Gen Diagnostics, PathoQuest, Selux Diagnostics, 1928 Diagnostics and Qvella; monies are paid to Mayo Clinic. In addition, R.P. has a patent on Bordetella pertussis/parapertussis PCR issued, a patent on a device/method for sonication with royalties paid by Samsung to Mayo Clinic and a patent on an antibiofilm substance issued. R.P. receives travel reimbursement from the American Society for Microbiology (ASM) and the Infectious Disease Society of America (IDSA), an editor’s stipend from IDSA and honoraria from NBME, Up-to-Date and the Infectious Diseases Board Review Course. All other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Microbiology thanks R. Turner and L. Zhang for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Osteomyelitis

Bone infection.

Infective endocarditis

Infection of endocardium, typically of heart valves.

Persister cells

Subpopulation of dormant, antibiotic-tolerant bacterial cells that are able to resume growth after antimicrobial stress is relieved.

Debridement

Surgical removal of damaged or dead tissue from an infected wound.

Nanocarriers

A drug delivery platform in the nanoscale range (2–500 nm). Common nanocarriers include liposomes, polymers and micelles.

Fenton-inactive metals

Also called ‘redox-inactive metals’, these are a class of transition metals (such as Ag and Hg) that cannot undergo redox reaction and hence cannot inherently produce toxic reactive oxygen species.

Peritonitis

Inflammation of the peritoneum, the tissue layer lining the inner wall of the abdomen, often as a result of bacterial infection.

Chitosan

A linear polysaccharide, obtained from the outer skeleton of insects and shellfish, composed of randomly distributed d-glucosamine and N-acetyl-d-glucosamine units.

Therapeutic index

A quantitative measure of the relative safety of a drug determined by the dosage that produces a therapeutic effect without host toxicity and the concentration that results in dangerous side effects.

Quorum sensing

A process whereby bacteria communicate and perform coordinated activities in response to a particular cell population density determined by specific signalling molecules.

Cypate

A near-infrared fluorescent dye belonging to the carbocyanine dye family, widely used for metabolite labelling and in vivo imaging.

Proline

A proteinogenic amino acid vital for the biosynthesis of collagen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makabenta, J.M.V., Nabawy, A., Li, CH. et al. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat Rev Microbiol 19, 23–36 (2021). https://doi.org/10.1038/s41579-020-0420-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-020-0420-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing